scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Loss of PIKfyve Causes Transdifferentiation of Dictyostelium Spores Into Basal Disc Cells.

19 Aug 2021-Frontiers in Cell and Developmental Biology (Front Cell Dev Biol)-Vol. 9, pp 692473-692473
TL;DR: In this paper, the authors identified pikfyve as the defective gene in a Dictyostelium mutant that failed to form spores, and showed that the defective genes not only inhibited early autophagy and prespore induction, but acted additively to the basal disc inducer DIF-1 to upregulate ecmB expression.
Abstract: The 1-phosphatidylinositol-3-phosphate 5-kinase PIKfyve generates PtdIns3,5P2 on late phagolysosomes, which by recruiting the scission protein Atg18, results in their fragmentation in the normal course of endosome processing. Loss of PIKfyve function results in cellular hypervacuolization in eukaryotes and organ failure in humans. We identified pikfyve as the defective gene in a Dictyostelium mutant that failed to form spores. The amoebas normally differentiated into prespore cells and initiated spore coat protein synthesis in Golgi-derived prespore vesicles. However, instead of exocytosing, the prespore vesicles then fused to form the single vacuole that typifies the stalk and basal disc cells that normally support the spores. This process was accompanied by stalk wall biosynthesis, loss of spore gene expression and overexpression of ecmB, a basal disc and stalk-specific gene, but not of DDB_G0278745, a stalk-specific gene. Transdifferentiation of prespore into basal disc cells was previously observed in mutants that lack early autophagy genes, like atg5, atg7 and atg9. However, while autophagy mutants specifically lacked cAMP induction of prespore gene expression, pikfyveˉ showed normal early autophagy and prespore induction, but acted additively to the basal disc inducer DIF-1 to upregulate ecmB expression. Combined, the data suggest that the Dictyostelium endosomal system influences cell fate by acting on cell type specific gene expression.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the choice between the prestalk and prespore pathways of cell differentiation may depend on the relative strength of the activities of AMPK and mTORC1, and that these may be controlled by the acidity of intracellular acidic compartments/lysosomes.
Abstract: mTORC1 and AMPK are mutually antagonistic sensors of nutrient and energy status that have been implicated in many human diseases including cancer, Alzheimer's disease, obesity and type 2 diabetes. Starved cells of the social amoeba Dictyostelium discoideum aggregate and eventually form fruiting bodies consisting of stalk cells and spores. We focus on how this bifurcation of cell fate is achieved. During growth mTORC1 is highly active and AMPK relatively inactive. Upon starvation, AMPK is activated and mTORC1 inhibited; cell division is arrested and autophagy induced. After aggregation, a minority of the cells (prestalk cells) continue to express much the same set of developmental genes as during aggregation, but the majority (prespore cells) switch to the prespore program. We describe evidence suggesting that overexpressing AMPK increases the proportion of prestalk cells, as does inhibiting mTORC1. Furthermore, stimulating the acidification of intracellular acidic compartments likewise increases the proportion of prestalk cells, while inhibiting acidification favours the spore pathway. We conclude that the choice between the prestalk and the prespore pathways of cell differentiation may depend on the relative strength of the activities of AMPK and mTORC1, and that these may be controlled by the acidity of intracellular acidic compartments/lysosomes (pHv), cells with low pHv compartments having high AMPK activity/ low mTORC1 activity, and those with high pHv compartments having high mTORC1 /low AMPK activity. Increased insight into the regulation and downstream consequences of this switch should increase our understanding of its potential role in human diseases, and indicate possible therapeutic interventions.

4 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated whether autophagy also prevents encystation in the dictyostelid Polysphondylium pallidum, which forms both spores and cysts.
Abstract: Background Autophagy (self-feeding) assists survival of starving cells by partial self-digestion, while dormancy as cysts, spores or seeds enables long-term survival. Starving Dictyostelium amoebas construct multicellular fruiting bodies with spores and stalk cells, with many Dictyostelia still able to encyst individually like their single-celled ancestors. While autophagy mostly occurs in the somatic stalk cells, autophagy gene knock-outs in Dictyostelium discoideum (D. discoideum) formed no spores and lacked cAMP induction of prespore gene expression. Methods To investigate whether autophagy also prevents encystation, we knocked-out autophagy genes atg5 and atg7 in the dictyostelid Polysphondylium pallidum, which forms both spores and cysts. We measured spore and cyst differentiation and viability in the knock-out as well as stalk and spore gene expression and its regulation by cAMP. We tested a hypothesis that spores require materials derived from autophagy in stalk cells. Sporulation requires secreted cAMP acting on receptors and intracellular cAMP acting on PKA. We compared the morphology and viability of spores developed in fruiting bodies with spores induced from single cells by stimulation with cAMP and 8Br-cAMP, a membrane-permeant PKA agonist. Results Loss of autophagy in P. pallidum reduced but did not prevent encystation. Stalk cells still differentiated but stalks were disorganised. However, no spores were formed at all and cAMP-induced prespore gene expression was lost. D. discoideum spores induced in vitro by cAMP and 8Br-cAMP were smaller and rounder than spores formed multicellularly and while they were not lysed by detergent they germinated not (strain Ax2) or poorly (strain NC4), unlike spores formed in fruiting bodies. Conclusions The stringent requirement of sporulation on both multicellularity and autophagy, which occurs mostly in stalk cells, suggests that stalk cells nurse the spores through autophagy. This highlights autophagy as a major cause for somatic cell evolution in early multicellularity.
Journal ArticleDOI
TL;DR: The stringent requirement of sporulation on both multicellularity and Autophagy, which occurs mostly in stalk cells, suggests that stalk cells nurse the spores through autophagy.
Abstract: Background: Autophagy (self-feeding) assists survival of starving cells by partial self-digestion, while dormancy as cysts, spores or seeds enables long-term survival. Starving Dictyostelium amoebas construct multicellular fruiting bodies with spores and stalk cells, with many Dictyostelia still able to encyst individually like their single-celled ancestors. While autophagy mostly occurs in the somatic stalk cells, autophagy gene knock-outs in Dictyostelium discoideum (D. discoideum) formed no spores and lacked cAMP induction of prespore gene expression. Methods: To investigate whether autophagy also prevents encystation, we knocked-out autophagy genes atg5 and atg7 in the dictyostelid Polysphondylium pallidum, which forms both spores and cysts. We measured spore and cyst differentiation and viability in the knock-out as well as stalk and spore gene expression and its regulation by cAMP. We tested a hypothesis that spores require materials derived from autophagy in stalk cells. Sporulation requires secreted cAMP acting on receptors and intracellular cAMP acting on PKA. We compared the morphology and viability of spores developed in fruiting bodies with spores induced from single cells by stimulation with cAMP and 8Br-cAMP, a membrane-permeant PKA agonist. Results: Loss of autophagy in P. pallidum reduced but did not prevent encystation. However, spore, but not stalk differentiation, and cAMP-induced prespore gene expression were lost. Spores induced in vitro by cAMP and 8Br-cAMP were smaller and rounder than spores formed multicellularly and while they were not lysed by detergent they did not germinate, unlike multicellular spores. Conclusions: The stringent requirement of sporulation on both multicellularity and autophagy, which occurs mostly in stalk cells, suggests that stalk cells nurse the spores through autophagy. This highlights autophagy as a major cause for somatic cell evolution in early multicellularity.
References
More filters
Journal ArticleDOI
TL;DR: Using this method, evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes is provided, suggesting that Rab7 is involved in this step.
Abstract: During the process of autophagy, autophagosomes undergo a maturation process consisting of multiple fusions with endosomes and lysosomes, which provide an acidic environment and digestive function to the interior of the autophagosome. Here we found that a fusion protein of monomeric red-fluorescence protein and LC3, the most widely used marker for autophagosomes, exhibits a quite different localization pattern from that of GFP-LC3. GFP-LC3 loses fluorescence due to lysosomal acidic and degradative conditions but mRFP-LC3 does not, indicating that the latter can label the autophagic compartments both before and after fusion with lysosomes. Taking advantage of this property, we devised a novel method for dissecting the maturation process of autophagosomes. mRFP-GFP tandem fluorescent-tagged LC3 (tfLC3) showed a GFP and mRFP signal before the fusion with lysosomes, and exhibited only the mRFP signal subsequently. Using this method, we provided evidence that overexpression of a dominant negative form of Rab7 prevented the fusion of autophagosomes with lysosomes, suggesting that Rab7 is involved in this step. This method will be of general utility for analysis of the autophagosome maturation process.

1,967 citations

Journal ArticleDOI
TL;DR: Electroporating BamHI or EcoRI together with pyr5-6 plasmids cut with the same enzyme stimulates the efficiency of transformation in Dictyostelium discoideum more than 20-fold over the rate seen when plasmid DNA alone is introduced.
Abstract: Introduction of restriction enzyme along with linearized plasmid results in integration of plasmid DNA at genomic restriction sites in a high proportion of the resulting transformants. We have found that electroporating BamHI or EcoRI together with pyr5-6 plasmids cut with the same enzyme stimulates the efficiency of transformation in Dictyostelium discoideum more than 20-fold over the rate seen when plasmid DNA alone is introduced. Restriction enzyme-mediated integration generates insertions into genomic restriction sites in an apparently random manner, some of which cause mutations. About 1 in 400 of the Dictyostelium transformants displayed arrested or aberrant development. The integrated plasmid, along with flanking genomic DNA, was excised from some of these mutants, cloned in Escherichia coli, and used to transform other Dictyostelium cells. Homologous recombination within the flanking sequences resulted in the same phenotypes displayed by the original mutants, directly demonstrating that the affected genes were responsible for the specific morphological phenotypes. This method of insertional mutagenesis should be useful for tagging, and subsequent cloning, of many developmentally important genes that can be identified by their mutant phenotypes.

504 citations

Journal ArticleDOI
TL;DR: It is proposed that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.
Abstract: The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Delta, fab1(tsf), and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Delta mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.

397 citations

Journal ArticleDOI
01 Jan 1987-Nature
TL;DR: DIF-1, the major bioactive species after purification, has now been identified using a combined microchemical, spectroscopic and synthetic approach and represents a new class of effector molecule.
Abstract: Morphogens are signal molecules presumed to exist in embryos and to be involved in establishing the spatial pattern of cells during development. Differentiation inducing factor (DIF) has the properties of a morphogen required for producing the prestalk/prespore pattern in the aggregate formed by cells of the slime mould Dictyostelium in response to starvation. DIF-1, the major bioactive species after purification, has now been identified using a combined microchemical, spectroscopic and synthetic approach. The structure is defined as 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone, and represents a new class of effector molecule. The availability of relatively large quantities of synthetic and isotopically labelled materials should now allow progress towards a detailed understanding of the pattern-forming processes in Dictyostelium development.

348 citations

Journal ArticleDOI
TL;DR: A robust system for the production of multiple gene mutations in Dictyostelium is described by recycling a single selectable marker, Blasticidin S resistance, using the Cre-loxP system and confirmed by generating a single cell carrying four separate gene disruptions.
Abstract: Dictyostelium discoideum has proven an exceptionally powerful system for studying numerous aspects of cellular and developmental functions. The relatively small ( approximately 34 Mb) chromosomal genome of Dictyostelium and high efficiency of targeted gene disruption have enabled researchers to characterize many specific gene functions. However, the number of selectable markers in Dictyostelium is restricted, as is the ability to perform effective genetic crosses between strains. Thus, it has been difficult to create multiple mutations within an individual cell to study epistatic relationships among genes or potential redundancies between various pathways. We now describe a robust system for the production of multiple gene mutations in Dictyostelium by recycling a single selectable marker, Blasticidin S resistance, using the Cre-loxP system. We confirm the effectiveness of the system by generating a single cell carrying four separate gene disruptions. Furthermore, the cells remain sensitive to transformation for additional targeted or random mutagenesis requiring Blasticidin selection and for functional expression studies of mutated or tagged proteins using other selectable markers.

250 citations