scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Low-Cost Carbon Nanoparticles for Removing Hazardous Organic Pollutants from Water: Complete Remediation Study and Multi-Use Investigation

07 Sep 2022-Inorganics (Basel)-Vol. 10, Iss: 9, pp 136-136
TL;DR: In this article , a 30 nm to 50 nm particle size, a 264 m2 g−1 surface area, and a cubical graphite lattice XRD pattern were obtained for removing malachite green (MG), indigo carmine (IC), rhodamine B (RB), and methylene blue (MB) dyes from water.
Abstract: Continuous waste discharge into natural water resources in many countries is a severe global issue, and seeking an effective solution is a researcher’s concern. Herein, toilet paper waste was a low-cost precursor for preparing carbon nanoparticles (TPCNPs). The characterization of TPCNPs revealed a 30 nm to 50 nm particle size, a 264 m2 g−1 surface area, and a cubical graphite lattice XRD pattern. The TPCNPs were tested for removing malachite green (MG), indigo carmine (IC), rhodamine B (RB), and methylene blue (MB) dyes from water. The solution parameters were examined for the sorption process, and a pH of 5.0 suited the MB removal, while a pH of 6.0 was suitable for MG, IC, and RB. The effect of concentration investigation showed an adsorption capacity of 110.9, 64.8, 73.5, and 98 mg g−1 for MG, IC, RB, and MB, respectively. The sorption of the four dyes fitted the Langmuir isotherm model; it was exothermic and spontaneous. The water remediation was tested using groundwater and seawater samples (GW and SW) spiked with pollutants. It is worth mentioning that one treatment sufficed for the remediation of GW and SW contaminated by 5 mg L−1 concentration, while a double treatment was required for 10 mg L−1 pollution in both samples.
Citations
More filters
Journal ArticleDOI
17 Feb 2023
TL;DR: A comprehensive review of the microfluidic-based passive and active mixing techniques for nanoparticles and their latest developments is provided in this article , where an analysis is provided on the challenges in micro-fluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis and hybrid formulations and devices.
Abstract: Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles. Gold and silver NPs, iron oxide NPs, quantum dots, and carbon and silica-based nanomaterials make up the bulk of the inorganic NPs. These NPs are prepared using a variety of top-down and bottom-up approaches. Microfluidics provide an attractive synthesis alternative and is advantageous compared to the conventional bulk methods. The microfluidic mixing-based production methods offer better control in achieving the desired size, morphology, shape, size distribution, and surface properties of the synthesized NPs. The technology also exhibits excellent process repeatability, fast handling, less sample usage, and yields greater encapsulation efficiencies. In this article, we provide a comprehensive review of the microfluidic-based passive and active mixing techniques for NP synthesis, and their latest developments. Additionally, a summary of microfluidic devices used for NP production is presented. Nonetheless, despite significant advancements in the experimental procedures, complete details of a nanoparticle-based system cannot be deduced from the experiments alone, and thus, multiscale computer simulations are utilized to perform systematic investigations. The work also details the most common multiscale simulation methods and their advancements in unveiling critical mechanisms involved in nanoparticle synthesis and the interaction of nanoparticles with other entities, especially in biomedical and therapeutic systems. Finally, an analysis is provided on the challenges in microfluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis, and hybrid formulations and devices.

3 citations

Journal ArticleDOI
TL;DR: In this article , the authors used toilet paper waste as a precursor for carbon nanoparticles (CRNPs) for water remediation as low-cost sorbent, and the fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW.
Abstract: Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers’ concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs). The TEM results showed a particle size range of 30.2 nm to 48.1 nm, the BET surface area was 283 m2 g−1, and the XRD pattern indicated cubical-graphite crystals. The synthesized CRNPs were tested for removing tigecycline (TGCN), chlortetracycline (CTCN), oxytetracycline (OTCN), and doxycycline (DXCN) via the batch process. The adsorption equilibrium time for TGCN, DXCN, CTCN, and OTCN was 60 min, and the concentration influence revealed an adsorption capacity of 172.5, 200.1, 202.4, and 200.0 mg g−1, respectively. The sorption of the four drugs followed the PSFO, and the LFDM models indicated their high sorption affinity to the CRNPs. The adsorption of the four drugs fitted the multilayer FIM that supported the high-affinity claim. The removals of the four drugs were exothermic and spontaneous physisorption. The fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW; therefore, CRNPs are suggested for water remediation as low-cost sorbent.

2 citations

Journal ArticleDOI
TL;DR: In this article , the removal of Rhodamine B dye from an aqueous medium utilizing MgTiO3@g-C3N4 nanohybrids was investigated using batch mode studies.
Abstract: This report investigates the elimination of hazardous Rhodamine B dye (RhB) from an aqueous medium utilizing MgTiO3@g-C3N4 nanohybrids manufactured using a facile method. The nanohybrid MgTiO3@g-C3N4 was generated using an ultrasonic approach in the alcoholic solvent. Various techniques, including HRTEM, EDX, XRD, BET, and FTIR, were employed to describe the fabricated MgTiO3@g-C3N4 nanohybrids. RhB elimination was investigated utilizing batch mode studies, and the maximum removal was attained at pH 7.0. The RhB adsorption process is more consistent with the Langmuir isotherm model. The highest adsorption capacity of MgTiO3@g-C3N4 nanohybrids for RhB was determined to be 232 mg/g. The dye adsorption followed a pseudo-second-order model, and the parameters calculated indicated that the kinetic adsorption process was spontaneous. Using ethanol and water, the reusability of the nanomaterial was investigated, and based on the results; it can be concluded that the MgTiO3@g-C3N4 nanohybrids are easily regenerated for dye removal. The removal mechanism for the removal of RhB dye into MgTiO3@g-C3N4 nanohybrids was also investigated.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a novel phosphate-embedded silica nanoparticles (P@SiO2) nanocomposite was used as an effective adsorbent through a hydrothermal route.
Abstract: This work aims to prepare a novel phosphate-embedded silica nanoparticles (P@SiO2) nanocomposite as an effective adsorbent through a hydrothermal route. Firstly, a mixed solution of sodium silicate and sodium phosphate was passed through a strong acidic resin to convert it into hydrogen form. After that, the resultant solution was hydrothermally treated to yield P@SiO2 nanocomposite. Using kinetic studies, methylene blue (MB) dye was selected to study the removal behavior of the P@SiO2 nanocomposite. The obtained composite was characterized using several advanced techniques. The experimental results showed rapid kinetic adsorption where the equilibrium was reached within 100 s, and the pseudo-second-order fitted well with experimental data. Moreover, according to Langmuir, one gram of P@SiO2 nanocomposite can remove 76.92 mg of the methylene blue dye. The thermodynamic studies showed that the adsorption process was spontaneous, exothermic, and ordered at the solid/solution interface. Finally, the results indicated that the presence of NaCl did not impact the adsorption behavior of MB dye. Due to the significant efficiency and promising properties of the prepared P@SiO2 nanocomposite, it could be used as an effective adsorbent material to remove various cationic forms of pollutants from aqueous solutions in future works.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors employed commercial Mesquite charcoal as a low-cost precursor for fabricating Mesquite carbon nanoparticles (MUCNPs) using a ball-milling process.
Abstract: Water pollution has invaded seas, rivers, and tap water worldwide. This work employed commercial Mesquite charcoal as a low-cost precursor for fabricating Mesquite carbon nanoparticles (MUCNPs) using a ball-milling process. The scanning electron energy-dispersive microscopy results for MUCNPs revealed a particle size range of 52.4–75.0 nm. The particles were composed mainly of carbon with trace amounts of aluminum, potassium, calcium, titanium, and zinc. The X-ray diffraction peaks at 26.76 and 43.28 2θ° ascribed to the (002) and (100) planes indicated a crystalized graphite phase. Furthermore, the lack of FT-IR vibrations above 3000 cm−1 showed that the MUCNPs were not functionalized. The MUCNPs’ pore diameter, volume, and surface area were 114.5 Ǻ, 0.363 cm3 g−1, and 113.45 m2 g−1. The batch technique was utilized to investigate MUCNPs’ effectiveness in removing chlorohexidine gluconate (CHDNG) from water, which took 90 min to achieve equilibrium and had an adsorption capacity of 65.8 mg g−1. The adsorption of CHDNG followed pseudo-second-order kinetics, with the rate-limiting step being diffusion in the liquid film. The Langmuir isotherm dominated the CHDNG adsorption on the MUCNPs with a correlation coefficient of 0.99. The thermodynamic studies revealed that CHDNG adsorption onto the MUCNPs was exothermic and favorable, and its spontaneity increased inversely with CHDNG concentration. The ball-milling-made MUCNPs demonstrated consistent efficiency through regeneration–reuse cycles.
References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the presentation, nomenclature, and methodology associated with the application of physisorption for surface area assessment and pore size analysis.
Abstract: Gas adsorption is an important tool for the characterisation of porous solids and fine powders. Major advances in recent years have made it necessary to update the 1985 IUPAC manual on Reporting Physisorption Data for Gas/Solid Systems. The aims of the present document are to clarify and standardise the presentation, nomenclature and methodology associated with the application of physisorption for surface area assessment and pore size analysis and to draw attention to remaining problems in the interpretation of physisorption data.

11,019 citations

Journal ArticleDOI
TL;DR: In this paper, the root mean square strain was determined from the interplanar spacing and strain estimated from the three models, viz, uniform deformation model, unweighted deformation stress model, and uniform density model.
Abstract: ZnO nanoparticles were prepared by coprecipitation method at 450C. X-ray diffraction result indicates that the sample is having a crystalline wurtzite phase. Transmission electron microscopy (TEM) result reveals that the ZnO sample is spherical in shape with an average grain size of about 50nm. X-ray peak broadening analysis was used to evaluate the crystalline sizes and lattice strain by the Williamson-Hall (W-H) analysis. All other relevant physical parameters such as strain, stress, and energy density values were also calculated using W-H analysis with different models, viz, uniform deformation model, uniform deformation stress model and uniform deformation energy density model. The root mean square strain was determined from the interplanar spacing and strain estimated from the three models. The three models yield different strain values; it may be due to the anisotropic nature of the material. The mean particle size of ZnO nanoparticles estimated from TEM analysis, Scherrers formula and W-H analysis is highly intercorrelated.

1,439 citations

Journal ArticleDOI
TL;DR: The levels of drug substances reported in drinking water around the world are examined and the possible implications of the presence of these compounds are highlighted and assessed, and recommendations are made for further research.
Abstract: Recently, considerable interest has developed regarding the presence of pharmaceuticals in the environment, but there has been comparatively little study on the potential of these substances to enter potable supplies This is surprising because drinking water would provide a direct route into the body for any drugs that might be present Although many countries employ advanced treatments, such as granular activated carbon, membrane technologies, ozonation and ultraviolet radiation, for treating water intended for human consumption, some compounds have been shown to be unaffected by such processes Here, we examine the levels of drug substances reported in drinking water around the world The possible implications of the presence of these compounds are highlighted and assessed, and recommendations are made for further research

497 citations

Journal ArticleDOI
TL;DR: This review systematically summarizes the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements.
Abstract: Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.

454 citations

Journal ArticleDOI
TL;DR: In this paper, the adsorption of lead(II) was studied on activated carbon prepared from Tamarind wood with zinc chloride activation and the experimental data were analyzed by the Freundlich isotherm and the Langmuir is-otherm.
Abstract: In this work, the adsorption of lead(II) was studied on activated carbon prepared from Tamarind wood with zinc chloride activation. Adsorption studies were conducted in the range of 10–50 mg/l initial lead(II) concentration and at temperature in the range of 10–50 °C. The experimental data were analyzed by the Freundlich isotherm and the Langmuir isotherm. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 43.85 mg/g. The rates of adsorption were found to confirm to pseudo-second-order kinetics with good correlation and the overall rate of lead(II) uptake was found to be controlled by pore diffusion, film diffusion and particle diffusion, throughout the entire adsorption period. Boyd plot confirmed that external mass transfer was the rate-limiting step in the sorption process. Different thermodynamic parameters, viz., ΔH°, ΔS° and ΔG° have also been evaluated and it has been found that the sorption was feasible, spontaneous and endothermic in nature. The results indicate that the Tamarind wood activated could be used to effectively adsorb lead(II) from aqueous solutions.

397 citations