scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Low-dose CT via convolutional neural network

01 Feb 2017-Biomedical Optics Express (Optical Society of America)-Vol. 8, Iss: 2, pp 679-694
TL;DR: A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion, demonstrating a great potential of the proposed method on artifact reduction and structure preservation.
Abstract: In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods.
Citations
More filters
Journal ArticleDOI
TL;DR: A perspective on the basic concepts of convolutional neural network and its application to various radiological tasks is offered, and its challenges and future directions in the field of radiology are discussed.
Abstract: Convolutional neural network (CNN), a class of artificial neural networks that has become dominant in various computer vision tasks, is attracting interest across a variety of domains, including radiology. CNN is designed to automatically and adaptively learn spatial hierarchies of features through backpropagation by using multiple building blocks, such as convolution layers, pooling layers, and fully connected layers. This review article offers a perspective on the basic concepts of CNN and its application to various radiological tasks, and discusses its challenges and future directions in the field of radiology. Two challenges in applying CNN to radiological tasks, small dataset and overfitting, will also be covered in this article, as well as techniques to minimize them. Being familiar with the concepts and advantages, as well as limitations, of CNN is essential to leverage its potential in diagnostic radiology, with the goal of augmenting the performance of radiologists and improving patient care. • Convolutional neural network is a class of deep learning methods which has become dominant in various computer vision tasks and is attracting interest across a variety of domains, including radiology. • Convolutional neural network is composed of multiple building blocks, such as convolution layers, pooling layers, and fully connected layers, and is designed to automatically and adaptively learn spatial hierarchies of features through a backpropagation algorithm. • Familiarity with the concepts and advantages, as well as limitations, of convolutional neural network is essential to leverage its potential to improve radiologist performance and, eventually, patient care.

2,189 citations


Cites background from "Low-dose CT via convolutional neura..."

  • ...Two previous studies showed that low-dose and ultra-low-dose CT images could be effectively denoised using deep learning [52, 53]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems, which combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure.
Abstract: In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise non-linearity) when the normal operator ( $H^{*}H$ , where $H^{*}$ is the adjoint of the forward imaging operator, $H$ ) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a $512\times 512$ image on the GPU.

1,757 citations

Journal ArticleDOI
TL;DR: This work combines the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging and achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases.
Abstract: Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

1,161 citations


Cites background or methods or result from "Low-dose CT via convolutional neura..."

  • ...9(f) and (g) suffered a bit from oversmoothing, which is consistent to the previous results with a lightweight CNN as reported in [37]....

    [...]

  • ...preliminary results with a light-weight CNN-based framework for LDCT imaging [37]....

    [...]

  • ...It can be considered as a deepened variant of the lightweight CNN model [37]....

    [...]

  • ...problem is restricted within the image domain [37]....

    [...]

  • ...The dataset contained 2,378 3mm thickness full and quarter dose 512 × 512 CT images from 10 patients [37]....

    [...]

Journal ArticleDOI
TL;DR: Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels.
Abstract: Noise is inherent to low-dose CT acquisition We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images The performance of this discriminator was used as an adversarial loss for the generator Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images The phantom and patients were scanned at 20% and 100% routine clinical dose Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images However, CNNs trained with adversarial loss captured image statistics of routine-dose images better Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels Testing took less than 10 s per CT volume CNN-based low-dose CT noise reduction in the image domain is feasible Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images

781 citations


Cites background or methods from "Low-dose CT via convolutional neura..."

  • ...The methods proposed in [13]–[15] showed good quantitative noise reduction properties....

    [...]

  • ...Training with only squared error loss as proposed in [13] led to smooth images with low...

    [...]

  • ...In previous studies, the problem of voxel alignment was mitigated by simulation of low-dose CT images based on routine-dose images [11], [13]....

    [...]

  • ...Therefore, previous works have resorted to simulation of low-dose CT images based on routine-dose images [11], [13], which is a challenging problem [18]....

    [...]

  • ...[13] proposed a convolutional neural network (CNN) that estimated...

    [...]

Journal ArticleDOI
TL;DR: Recent experimental work in convolutional neural networks to solve inverse problems in imaging, with a focus on the critical design decisions is reviewed, including sparsity-based techniques such as compressed sensing.
Abstract: In this article, we review recent uses of convolutional neural networks (CNNs) to solve inverse problems in imaging. It has recently become feasible to train deep CNNs on large databases of images, and they have shown outstanding performance on object classification and segmentation tasks. Motivated by these successes, researchers have begun to apply CNNs to the resolution of inverse problems such as denoising, deconvolution, superresolution, and medical image reconstruction, and they have started to report improvements over state-of-the-art methods, including sparsity-based techniques such as compressed sensing. Here, we review the recent experimental work in these areas, with a focus on the critical design decisions.

544 citations


Cites background or methods from "Low-dose CT via convolutional neura..."

  • ...This formulation is used in most of the works we surveyed, [6], [7], [11], [12], [18], [19], [23], [25], [26], despite the fact that several raise questions about whether it is the best choice [25], [34]....

    [...]

  • ...The simplest approach to architecture design is simply stack of series of convolutional layers and non-linear functions [10], [26], see Figure 2....

    [...]

References
More filters
Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

40,609 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations