scispace - formally typeset
Search or ask a question

Low-frequency noise characterization, evaluation and modeling of advanced Si- and SiGe-based CMOS transistors

TL;DR: A wide variety of novel complementary metal-oxide-semiconductor (CMOS) devices that are strong contenders for future high-speed and low-noise RF circuits have been evaluated by means of static elec...
Abstract: A wide variety of novel complementary-metal-oxide-semiconductor (CMOS) devices that are strong contenders for future high-speed and low-noise RF circuits have been evaluated by means of static elec ...

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2003
TL;DR: In this article, a survey of 1/f noise in homogeneous semiconductor samples is presented, where a distinction is made between mobility noise and number noise, and it is shown that there always is mobility noise with an /spl alpha/ value with a magnitude in the order of 10/sup -4/.
Abstract: This survey deals with 1/f noise in homogeneous semiconductor samples. A distinction is made between mobility noise and number noise. It is shown that there always is mobility noise with an /spl alpha/ value with a magnitude in the order of 10/sup -4/. Damaging the crystal has a strong influence on /spl alpha/, /spl alpha/ may increase by orders of magnitude. Some theoretical models are briefly discussed none of them can explain all experimental results. The /spl alpha/ values of several semiconductors are given. These values can be used in calculations of 1/f noise in devices. >

523 citations

Dissertation
10 Jun 2006
TL;DR: In this paper, the design of a CMOS integrated circuit as a readout electronic for the THz bolometric detectors, either semiconductor or high-Tc superconductor, was investigated.
Abstract: This PhD thesis deals with the design of a CMOS integrated circuit as a readout electronic for the THz bolometric detectors, either semiconductor or high-Tc superconductor. We study a chain of the analog signal processing composed of the differential fixed-gain amplifier for the temperature range of 40 to 400K, as well as of the high dynamic range low-pass active frequency filter. As the optimal amplifier configuration, a feedback-free architecture was selected in order to reach high frequency bandwidth (17MHz for gain 40dB), low quiescent current (Iq=2mA) and high input impedance. In this amplifier, the gain is set in the CMOS structure via two different methods and the accuracy is verified by wide-temperature measurements of the fabricated integrated circuit. Consequently, the behaviour of the frequency filters is examined namely in the stopband, aiming to increase the maximal cut-off frequency. As an outcome, two structures with low influence of real active elements' parameters are designed: improved type-II Sallen-Key and the structure based on the CCII- current conveyor. In the last part, the integrated CCII- with very low output impedance is presented.

25 citations


Cites background from "Low-frequency noise characterizatio..."

  • ...These sources are well discussed in the available literature [45], [46], [47]....

    [...]

  • ...Handel, “Fundamental quantum 1/f noise in semiconductor devices Electron Devices“, IEEE Transactions on, Volume 41, Issue 11, Nov 1994 Page(s):2023 - 2033 [45] M....

    [...]

Journal ArticleDOI
10 Mar 2022-Science
TL;DR: Cloud-based "smart transceivers" stream weight data to edge devices, enabling ultraefficient photonic inference, and demonstrates image recognition at ultralow optical energy of 40 attojoules per multiply at 98.8% (93%) classification accuracy.
Abstract: Advanced machine learning models are currently impossible to run on edge devices such as smart sensors and unmanned aerial vehicles owing to constraints on power, processing, and memory. We introduce an approach to machine learning inference based on delocalized analog processing across networks. In this approach, named Netcast, cloud-based “smart transceivers” stream weight data to edge devices, enabling ultraefficient photonic inference. We demonstrate image recognition at ultralow optical energy of 40 attojoules per multiply (<1 photon per multiply) at 98.8% (93%) classification accuracy. We reproduce this performance in a Boston-area field trial over 86 kilometers of deployed optical fiber, wavelength multiplexed over 3 terahertz of optical bandwidth. Netcast allows milliwatt-class edge devices with minimal memory and processing to compute at teraFLOPS rates reserved for high-power (>100 watts) cloud computers. Description Learning on the edge Smart devices such as cell phones and sensors are low-power electronics operating on the edge of the internet. Although they are increasingly more powerful, they cannot perform complex machine learning tasks locally. Instead, such devices offload these tasks to the cloud, where they are performed by factory-sized servers in data centers, creating issues related to large power consumption, latency, and data privacy. Sludds et al. introduce an edge-computing architecture called NetCast that makes use of the strengths of photonics and electronics. In this method, smart transceivers periodically broadcast the weights of commonly used deep neural networks. The architecture allows low-power edge devices with minimal memory and processing to compute at teraflop rates otherwise reserved for high-power cloud computers. —ISO A new computing architecture allows low-power edge devices to perform at levels otherwise reserved for data centers.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based on the direct growth of nanwires in predefined locations.
Abstract: Nanoelectronic devices based upon self-assembled semiconductor nanowires are excellent research tools for investigating the behavior of structures with sublithographic features as well as a promising basis for future information processing technologies. New test structures and associated electrical measurement methods are the primary metrology needs necessary to enable the development, assessment, and adoption of emerging nanowire electronics. We describe two unique approaches to successfully fabricate nanowire devices: one based upon harvesting and positioning nanowires and one based upon the direct growth of nanowires in predefined locations. Test structures are fabricated and electronically characterized to probe the fundamental properties of chemical-vapor-deposition-grown silicon nanowires. Important information about current transport and fluctuations in materials and devices can be derived from noise measurements, and low-frequency $ \hbox{1}/f$ noise has traditionally been utilized as a quality and reliability indicator for semiconductor devices. Both low-frequency $\hbox{1}/f$ noise and random telegraph signals are shown here to be powerful methods for probing trapping defects in nanoelectronic devices.

23 citations


Additional excerpts

  • ...The dash-dotted line shows the ITRS requirement on αH for the 45-nm technology node [48], [49]....

    [...]

Journal ArticleDOI
TL;DR: The BSIM-CMG industry standard compact model for the FinFETs is improved and is able to capture the 1/ noise behavior over a wide range of biases, channel lengths, fin numbers, and number of fingers.
Abstract: 1/ ${f}$ noise is characterized on thick and thin-gate oxide-based FinFETs for different channel lengths. The devices exhibit gate bias dependence in 1/ ${f}$ noise even in the weak-inversion region of operation which cannot be explained by the existing flicker noise model. We attribute this phenomenon to the non-uniform oxide-trap distribution in energy or space. Based on our characterization results for n- and p-channel FinFETs, we have improved the BSIM-CMG industry standard compact model for the FinFETs. The improved model is able to capture the 1/ ${f}$ noise behavior over a wide range of biases, channel lengths, fin numbers, and number of fingers.

20 citations


Cites background from "Low-frequency noise characterizatio..."

  • ...Carrier number fluctuation and correlated mobility fluctuation are considered as the mechanism behind 1/f noise, which is widely supported by [9]–[12]....

    [...]

References
More filters
Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations


"Low-frequency noise characterizatio..." refers background in this paper

  • ...Values from Wilk, Wallace and Anthony [58]....

    [...]

  • ...From noise performance point of view it is worrying with the reports about degraded mobility [paper IV][59, 61-64] and high density of traps and fixed charges [papers IV and VII][58, 59, 65, 66]....

    [...]

  • ...9, with a material with higher dielectric constant, a so called high-k material, a physically thicker gate dielectric is allowed to achieve the same capacitance [58, 59]....

    [...]

Journal ArticleDOI
William Shockley1, W. T. Read1
TL;DR: In this article, the statistics of the recombination of holes and electrons in semiconductors were analyzed on the basis of a model in which the recombinations occurred through the mechanism of trapping.
Abstract: The statistics of the recombination of holes and electrons in semiconductors is analyzed on the basis of a model in which the recombination occurs through the mechanism of trapping. A trap is assumed to have an energy level in the energy gap so that its charge may have either of two values differing by one electronic charge. The dependence of lifetime of injected carriers upon initial conductivity and upon injected carrier density is discussed.

5,442 citations


"Low-frequency noise characterizatio..." refers methods in this paper

  • ...The capture and emission times, τc and τe, are in general governed by from ShockleyRead-Hall statistics [184]...

    [...]

Book
01 Apr 1985
TL;DR: In this paper, the transmission coefficient of a symmetric resonance tunneling diode has been derived for a Symmetric Resonant-Tunneling Diode, and it has been shown that it can be computed in terms of the Density of States in Semiconductor.
Abstract: Preface. Introduction. PART I: SEMICONDUCTOR PHYSICS. Energy Bands and Carrier Concentration in Thermal Equilibrium. Carrier Transport Phenomena. PART II: SEMICONDUCTOR DEVICES. p-n Junction. Bipolar Transistor and Related Devices. MOSFET and Related Devices. MESFET and Related Devices. Microwave Diodes, Quantum-Effect, and Hot-Electron Devices. Photonic Devices. PART III: SEMICONDUCTOR TECHNOLOGY. Crystal Growth and Epitaxy. Film Formation. Lithography and Etching. Impurity Doping. Integrated Devices. Appendix A: List of Symbols. Appendix B: International Systems of Units (SI Units). Appendix C: Unit Prefixes. Appendix D: Greek Alphabet. Appendix E: Physical Constants. Appendix F: Properties of Important Element and Binary Compound Semiconductors at 300 K. Appendix G: Properties of Si and GaAs at 300 K. Appendix H: Derivation of the Density of States in Semiconductor. Appendix I: Derivation of Recombination Rate for Indirect Recombination. Appendix J: Calculation of the Transmission Coefficient for a Symmetric Resonant-Tunneling Diode. Appendix K: Basic Kinetic Theory of Gases. Appendix L: Answers to Selected Problems. Index.

3,700 citations


"Low-frequency noise characterizatio..." refers background in this paper

  • ...For bulk semiconductors, temperature relation μb ∝ T -3/2 and μC ∝ T 3/2 have been observed [25]....

    [...]

Book
01 Jan 1987
TL;DR: In this article, the MOS transistors with ION-IMPLANTED CHANNELS were used for CIRCUIT SIMULATION in a two-and three-tier MOS structure.
Abstract: 1. SEMICONDUCTORS, JUNCTIONS AND MOFSET OVERVIEW 2. THE TWO-TERMINAL MOS STRUCTURE 3. THE THREE-TERMINAL MOS STRUCTURE 4. THE FOUR-TERMINAL MOS STRUCTURE 5. MOS TRANSISTORS WITH ION-IMPLANTED CHANNELS 6. SMALL-DIMENSION EFFECTS 7. THE MOS TRANSISTOR IN DYNAMIC OPERATION - LARGE-SIGNAL MODELING 8. SMALL-SIGNAL MODELING FOR LOW AND MEDIUM FREQUENCIES 9. HIGH-FREQUENCY SMALL-SIGNAL MODELS 10.MOFSET MODELING FOR CIRCUIT SIMULATION

3,156 citations


"Low-frequency noise characterizatio..." refers background in this paper

  • ...The thermal noise in the channel depends on the operating condition [120]...

    [...]