scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Low frequency plasmons in thin-wire structures

08 Jun 1998-Journal of Physics: Condensed Matter (IOP Publishing)-Vol. 10, Iss: 22, pp 4785-4809
TL;DR: In this paper, a photonic structure consisting of an extended 3D network of thin wires is shown to behave like a low density plasma of very heavy charged particles with a plasma frequency in the GHz range.
Abstract: A photonic structure consisting of an extended 3D network of thin wires is shown to behave like a low density plasma of very heavy charged particles with a plasma frequency in the GHz range. We show that the analogy with metallic behaviour in the visible is rather complete, and the picture is confirmed by three independent investigations: analytic theory, computer simulation and experiments on a model structure. The fact that the wires are thin is crucial to the validity of the picture. This new composite dielectric, which has the property of negative below the plasma frequency, opens new possibilities for GHz devices.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu/sub eff/, which can be tuned to values not accessible in naturally occurring materials.
Abstract: We show that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu//sub eff/, which can be tuned to values not accessible in naturally occurring materials, including large imaginary components of /spl mu//sub eff/. The microstructure is on a scale much less than the wavelength of radiation, is not resolved by incident microwaves, and uses a very low density of metal so that structures can be extremely lightweight. Most of the structures are resonant due to internal capacitance and inductance, and resonant enhancement combined with compression of electrical energy into a very small volume greatly enhances the energy density at critical locations in the structure, easily by factors of a million and possibly by much more. Weakly nonlinear materials placed at these critical locations will show greatly enhanced effects raising the possibility of manufacturing active structures whose properties can be switched at will between many states.

8,135 citations


Cites background or result from "Low frequency plasmons in thin-wire..."

  • ...Theoretical analysis of this structure has been confirmed by experiment [2]....

    [...]

  • ...Note that there is a symmetry between, on the one hand, the present structures designed to generate a magnetic permeability and within which we find enhanced electrostatic fields and, on the other hand, the earlier thin-wire structures [1], [2] designed to generate a negative electrical permittivity, and within which we find enhanced magnetic fields....

    [...]

Journal ArticleDOI
06 Aug 2004-Science
TL;DR: It is established that electromagnetic waves in both materials are governed by an effective permittivity of the same plasma form, which allows the creation of designer surface plasmons with almost arbitrary dispersion in frequency and in space.
Abstract: Metals such as silver support surface plasmons: electromagnetic surface excitations localized near the surface that originate from the free electrons of the metal. Surface modes are also observed on highly conducting surfaces perforated by holes. We establish a close connection between the two, showing that electromagnetic waves in both materials are governed by an effective permittivity of the same plasma form. The size and spacing of holes can readily be controlled on all relevant length scales, which allows the creation of designer surface plasmons with almost arbitrary dispersion in frequency and in space, opening new vistas in surface plasmon optics.

2,740 citations

Journal ArticleDOI
18 Sep 2008-Nature
TL;DR: Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.
Abstract: Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.

2,025 citations

Journal ArticleDOI
05 Mar 2004-Science
TL;DR: It is shown that magnetic response at terahertz frequencies can be achieved in a planar structure composed of nonmagnetic conductive resonant elements and suggested that artificial magnetic structures, or hybrid structures that combine natural and artificial magnetic materials, can play a key role in teraHertz devices.
Abstract: We show that magnetic response at terahertz frequencies can be achieved in a planar structure composed of nonmagnetic conductive resonant elements. The effect is realized over a large bandwidth and can be tuned throughout the terahertz frequency regime by scaling the dimensions of the structure. We suggest that artificial magnetic structures, or hybrid structures that combine natural and artificial magnetic materials, can play a key role in terahertz devices.

1,453 citations

Journal ArticleDOI
TL;DR: In this article, the existence of surface electromagnetic modes in corrugated surfaces of perfect conductors was explored and it was shown that these structures support surface bound states and that the dispersions of these modes have strong similarities with the dispersion of surface plasmon polariton bands of real metals.
Abstract: In this paper we explore the existence of surface electromagnetic modes in corrugated surfaces of perfect conductors. We analyse two cases: one-dimensional arrays of grooves and two-dimensional arrays of holes. In both cases we find that these structures support surface bound states and that the dispersions of these modes have strong similarities with the dispersion of the surface plasmon polariton bands of real metals. Importantly, the dispersion relation of these surface states is mainly dictated by the geometry of the grooves or holes and these results open the possibility of tailoring the properties of these modes by just tuning the geometrical parameters of the surface.

924 citations

References
More filters
Journal ArticleDOI
TL;DR: A mechanism for depression of the plasma frequency into the far infrared or even GHz band is proposed: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance.
Abstract: The plasmon is a well established collective excitation of metals in the visible and near UV, but at much lower frequencies dissipation destroys all trace of the plasmon and typical Drude behavior sets in. We propose a mechanism for depression of the plasma frequency into the far infrared or even GHz band: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance. Computations replicate the key features and confirm our analytic theory. The new structure has novel properties not observed before in the GHz band, including some possible impact on superconducting properties.

3,954 citations

Journal ArticleDOI
TL;DR: In this paper, the angle energy distribution of a fast electron losing energy to conduction electrons in a thick metallic foil has been derived assuming that the conduction electron constitute a Fermi-Dirac gas and that the fast electron undergoes only small fractional energy and momentum changes.
Abstract: The angle-energy distribution of a fast electron losing energy to the conduction electrons in a thick metallic foil has been derived assuming that the conduction electrons constitute a Fermi-Dirac gas and that the fast electron undergoes only small fractional energy and momentum changes. This distribution exhibits both collective interaction characteristics and individual interaction characteristics, and is more general than the result obtained by other workers. Describing the conduction electrons by the hydro-dynamical equations of Bloch, it has been shown that for very thin idealized foils energy loss may occur at a value which is less than the plasma energy, while as the foil thickness decreases below $\ensuremath{\sim}\frac{v}{{\ensuremath{\omega}}_{p}}$ the loss at the plasma energy becomes less than that predicted by more conventional theories. The net result is an increase in the energy loss per unit thickness as the foil thickness is decreased. It is suggested that the predicted loss at subplasma energies may correspond to some of the low-lying energy losses which have been observed by experimenters using thin foils.

2,623 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of the electrons in a dense electron gas is analyzed quantum-mechanically by a series of canonical transformations, and the results are related to the classical density fluctuation approach and Tomonaga's one-dimensional treatment of the degenerate Fermi gas.
Abstract: The behavior of the electrons in a dense electron gas is analyzed quantum-mechanically by a series of canonical transformations. The usual Hamiltonian corresponding to a system of individual electrons with Coulomb interactions is first re-expressed in such a way that the long-range part of the Coulomb interactions between the electrons is described in terms of collective fields, representing organized "plasma" oscillation of the system as a whole. The Hamiltonian then describes these collective fields plus a set of individual electrons which interact with the collective fields and with one another via short-range screened Coulomb interactions. There is, in addition, a set of subsidiary conditions on the system wave function which relate the field and particle variables. The field-particle interaction is eliminated to a high degree of approximation by a further canonical transformation to a new representation in which the Hamiltonian describes independent collective fields, with ${n}^{\ensuremath{'}}$ degrees of freedom, plus the system of electrons interacting via screened Coulomb forces with a range of the order of the inter electronic distance. The new subsidiary conditions act only on the electronic wave functions; they strongly inhibit long wavelength electronic density fluctuations and act to reduce the number of individual electronic degrees of freedom by ${n}^{\ensuremath{'}}$. The general properties of this system are discussed, and the methods and results obtained are related to the classical density fluctuation approach and Tomonaga's one-dimensional treatment of the degenerate Fermi gas.

1,407 citations

Journal ArticleDOI
TL;DR: A practical, new, face-centered-cubic dielectric structure which simultaneously solves two of the outstanding problems in photonic band structure and lends itself readily to microfabrication on the scale of optical wavelengths.
Abstract: We introduce a practical, new, face-centered-cubic dielectric structure which simultaneously solves two of the outstanding problems in photonic band structure. In this new ``photonic crystal'' the atoms are nonspherical, lifting the degeneracy at the W point of the Brillouin zone, and permitting a full photonic band gap rather than a pseudogap. Furthermore, this fully three-dimensional fcc structure lends itself readily to microfabrication on the scale of optical wavelengths. It is created by simply drilling three sets of holes 35.26\ifmmode^\circ\else\textdegree\fi{} off vertical into the top surface of a solid slab or wafer, as can be done, for example, by chemical-beam-assisted ion etching.

1,342 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of the electrons in a dense electron gas is analyzed in terms of their density fluctuations, which are then split into two components, one component associated with the organized oscillation of the system as a whole, the so-called "plasma" oscillation, and the other component representing the random thermal motion of the individual electrons.
Abstract: The behavior of the electrons in a dense electron gas is analyzed in terms of their density fluctuations. These density fluctuations may be split into two components. One component is associated with the organized oscillation of the system as a whole, the so-called "plasma" oscillation. The other is associated with the random thermal motion of the individual electrons and shows no collective behavior. It represents a collection of individual electrons surrounded by comoving clouds of charge which screen the electron fields within a distance of the order of magnitude of the Debye length. This split up of the density fluctuations corresponds to an effective separation of the Coulomb interaction into long-range and short-range parts; the separation occurs at roughly the Debye length.The relation between the individual and collective aspects of the electron gas is discussed in detail, and a general physical picture of the behavior of the system is given. It is shown that for phenomena involving distances greater than the Debye length, the system behaves collectively; for distances shorter than this length, it may be treated as a collection of approximately free individual particles, whose interactions may be described in terms of two-body collisions.This approach is used to study the interaction of a specified electron with the remainder of the electron gas. It is shown that the collective part of the response of this remainder to the field of the specified particle screens this field within a distance of the order of the Debye length; this furnishes a detailed description of the screening process. Moreover, if the specified particle moves with greater than the mean thermal speed, it excites collective oscillations in the form of a wake trailing the particle. The frequency of these collective oscillations and the energy emitted by the particle are calculated. A correspondence theoretical method is used to treat this phenomenon for the electrons in a metal. The results are in good agreement with the experiments of Ruthemann and Lang on the energy loss of kilovolt electrons in this metallic films.The generalization of these methods to an arbitrary interparticle force is carried out, and a criterion is obtained for the validity of a collective description of the particle interactions. It is shown that strong forces and high particle density favor collective behavior, while high random thermal velocities oppose it.

1,096 citations