scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Low rate of COVID-19 seroconversion in health-care workers at a Department of Infectious Diseases in Sweden during the later phase of the first wave; a prospective longitudinal seroepidemiological study.

04 Mar 2021-Infectious diseases (Informa UK Limited)-Vol. 53, Iss: 3, pp 169-175
TL;DR: The low rate of seroconversion during the study suggests that it is possible to prevent transmission of SARS-COV-2 in a high-exposure environment and compliance with adequate infection control guidelines is the likely explanation of the findings.
Abstract: Background: Health-care workers are at risk of contracting and transmitting SARS-CoV-2. The aim of this study was to investigate the prevalence of SARS-CoV-2 IgG antibodies and the rate of seroconversion in an environment with high exposure to SARS-CoV-2. Methods: 131 health-care workers at the Department of Infectious Diseases in Vasteras, Sweden, were included in the study. Abbott's SARS-COV-2 IgG immunoassay was used with a signal cut-off ratio of ≥1.4. Every third week from the beginning of May, blood samples were drawn, and the participants completed a questionnaire regarding symptoms consistent with COVID-19 and the result of any SARS-CoV-2 PCR performed since the last sampling occasion. Participants with IgG antibodies against SARS-CoV-2 were re-sampled only on the sixth and last occasion. Results: At the start of the study, 18 (15%) participants had SARS-CoV-2 IgG antibodies. At the end, 25 (19%) of 131 participants were seropositive. One case of asymptomatic infection was detected, and two cases with PCR-confirmed COVID-19 did not develop IgG antibodies. Conclusion: The low rate of seroconversion during the study suggests that it is possible to prevent transmission of SARS-COV-2 in a high-exposure environment. Compliance with adequate infection control guidelines is the likely explanation of our findings.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a two-time survey was performed in May and October 2020 for 545 hospital staff to investigate the changes in the results of the rapid kit test and chemiluminescence immunoassay (CLIA).

14 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that CD4+ T-cell reactivity is not a suitable measure of past infection and does not reliably indicate protection from infection in naive individuals.
Abstract: Background: The risk of SARS-CoV-2 infection among health care workers (HCWs) is a concern, but studies that conclusively determine whether HCWs are over-represented remain limited. Furthermore, methods used to confirm past infection vary and the immunological response after mild COVID-19 is still not well defined. Method: 314 HCWs were recruited from a Swedish Infectious Diseases clinic caring for COVID-19 patients. IgG antibodies were measured using two commercial assays (Abbot Architect nucleocapsid (N)-assay and YHLO iFlash-1800 N and spike (S)-assays) at five time-points, from March 2020 to January 2021, covering two pandemic waves. Seroprevalence was assessed in matched blood donors at three time-points. More extensive analyses were performed in 190 HCWs in September/October 2020, including two additional IgG-assays (DiaSorin LiaisonXL S1/S2 and Abbot Architect receptor-binding domain (RBD)-assays), neutralizing antibodies (NAbs), and CD4+ T-cell reactivity using an in-house developed in vitro whole-blood assay based on flow cytometric detection of activated cells after stimulation with Spike S1-subunit or Spike, Membrane and Nucleocapsid (SMN) overlapping peptide pools. Findings: Seroprevalence was higher among HCWs compared to sex and age-matched blood donors at all time-points. Seropositivity increased from 6.4% to 16.3% among HCWs between May 2020 and January 2021, compared to 3.6% to 11.9% among blood donors. We found significant correlations and high levels of agreement between NAbs and all four commercial IgG-assays. At 200-300 days post PCR-verified infection, there was a wide variation in sensitivity between the commercial IgG-assays, ranging from 90% in the RBD-assay. There was only moderate agreement between NAbs and CD4+ T-cell reactivity to S1 or SMN. Pre-existing CD4+ T-cell reactivity was present in similar proportions among HCW who subsequently became infected and those that did not. Conclusions: HCWs in COVID-19 patient care in Sweden have been infected with SARS-CoV-2 at a higher rate compared to blood donors. We demonstrate substantial variation between different IgG-assays and propose that multiple serological targets should be used to verify past infection. Our data suggest that CD4+ T-cell reactivity is not a suitable measure of past infection and does not reliably indicate protection from infection in naive individuals.

8 citations

Journal ArticleDOI
TL;DR: In this paper , the authors aimed to analyze risk factors for SARS-CoV-2 seroconversion among health care workers with a special emphasis on the respective healthcare institutions' recommendation regarding the use of FFP-2 masks.
Abstract: Health care workers (HCW) are heavily exposed to SARS-CoV-2 from the beginning of the pandemic. We aimed to analyze risk factors for SARS-CoV-2 seroconversion among HCW with a special emphasis on the respective healthcare institutions' recommendation regarding the use of FFP-2 masks.We recruited HCW from 13 health care institutions (HCI) with different mask policies (type IIR surgical face masks vs. FFP-2 masks) in Southeastern Switzerland (canton of Grisons). Sera of participants were analyzed for the presence of SARS-CoV-2 antibodies 6 months apart, after the first and during the second pandemic wave using an electro-chemiluminescence immunoassay (ECLIA, Roche Diagnostics). We captured risk factors for SARS-CoV-2 infection by using an online questionnaire at both time points. The effects of individual COVID-19 exposure, regional incidence and FFP-2 mask policy on the probability of seroconversion were evaluated with univariable and multivariable logistic regression.SARS-CoV-2 antibodies were detected in 99 of 2794 (3.5%) HCW at baseline and in 376 of 2315 (16.2%) participants 6 months later. In multivariable analyses the strongest association for seroconversion was exposure to a household member with known COVID-19 (aOR: 19.82, 95% CI 8.11-48.43, p < 0.001 at baseline and aOR: 8.68, 95% CI 6.13-12.29, p < 0.001 at follow-up). Significant occupational risk factors at baseline included exposure to COVID-19 patients (aOR: 2.79, 95% CI 1.28-6.09, p = 0.010) and to SARS-CoV-2 infected co-workers (aOR: 2.50, 95% CI 1.52-4.12, p < 0.001). At follow up 6 months later, non-occupational exposure to SARS-CoV-2 infected individuals (aOR: 2.54, 95% CI 1.66-3.89 p < 0.001) and the local COVID-19 incidence of the corresponding HCI (aOR: 1.98, 95% CI 1.30-3.02, p = 0.001) were associated with seroconversion. The healthcare institutions' mask policy (surgical masks during usual exposure vs. general use of FFP-2 masks) did not affect seroconversion rates of HCW during the first and the second pandemic wave.Contact with SARS-CoV-2 infected household members was the most important risk factor for seroconversion among HCW. The strongest occupational risk factor was exposure to COVID-19 patients. During this pandemic, with heavy non-occupational exposure to SARS-CoV-2, the mask policy of HCIs did not affect the seroconversion rate of HCWs.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined whether healthcare workers with high expo-lations of SARS-CoV-2 infection risks were at risk of infection by SARS infection.
Abstract: A year into the pandemic, the knowledge of SARS-CoV-2 infection risks among healthcare workers remains limited. In this cross-sectional study, we examined whether healthcare workers with high expos...

6 citations

Posted ContentDOI
28 Jul 2021
TL;DR: During this pandemic, with heavy non-occupational exposure to SARS-CoV-2, the mask policy of HCIs did not affect the seroconversion rate of HCWs and the strongest occupational risk factor was exposure to COVID-19 patients.
Abstract: BackgroundHealth care workers (HCW) are heavily exposed to SARS-CoV-2 from the beginning of the pandemic. We aimed to analyze risk factors for SARS-CoV-2 seroconversion among HCW with a special emphasis on the respective healthcare institutions’ recommendation regarding the use of FFP-2 masks. MethodsWe recruited HCW from 13 health care institutions (HCI) with different mask policies (type IIR surgical face masks vs. FFP-2 masks) in Southeastern Switzerland (canton of Grisons). Sera of participants were analyzed for the presence of SARS-CoV-2 antibodies six months apart, after the first and during the second pandemic wave using an electro-chemiluminescence immunoassay (ECLIA, Roche Diagnostics). We captured risk factors for SARS-CoV-2 infection by using an online questionnaire at both time points. The effects of individual COVID-19 exposure, regional incidence and FFP-2 mask policy on the probability of seroconversion were evaluated with univariable and multivariable logistic regression.ResultsSARS-CoV-2 antibodies were detected in 99 of 2794 (3.5%) HCW at baseline and in 376 of 2315 (16.2%) participants six months later. In multivariable analyses the strongest association for seroconversion was exposure to a household member with known COVID-19 (aOR: 19.82, 95% CI: 8.11-48.43, p<0.001 at baseline and aOR: 8.68, 95% CI: 6.13-12.29, p<0.001 at follow-up). Significant occupational risk factors at baseline included exposure to COVID-19 patients (aOR: 2.79, 95% CI: 1.28-6.09, p=0.010) and to SARS-CoV-2 infected co-workers (aOR: 2.50, 95% CI: 1.52-4.12, p<0.001). At follow up six months later, non-occupational exposure to SARS-CoV-2 infected individuals (aOR: 2.54, 95% CI: 1.66-3.89 p<0.001) and the local COVID-19 incidence of the corresponding HCI (aOR: 1.98, 95% CI: 1.30-3.02, p=0.001) were associated with seroconversion. The healthcare institutions’ mask policy (surgical masks vs. FFP-2 masks) did not affect seroconversion rates of HCW during the first and the second pandemic wave. ConclusionContact with SARS-CoV-2 infected household members was the most important risk factor for seroconversion among HCW. The strongest occupational risk factor was exposure to COVID-19 patients. During this pandemic, with heavy non-occupational exposure to SARS-CoV-2, the mask policy of HCIs did not affect the seroconversion rate of HCWs.

5 citations

References
More filters
Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
17 Mar 2020-JAMA
TL;DR: The epidemiological and clinical characteristics of novel coronavirus (2019-nCoV)-infected pneumonia in Wuhan, China, and hospital-associated transmission as the presumed mechanism of infection for affected health professionals and hospitalized patients are described.
Abstract: Importance In December 2019, novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited. Objective To describe the epidemiological and clinical characteristics of NCIP. Design, Setting, and Participants Retrospective, single-center case series of the 138 consecutive hospitalized patients with confirmed NCIP at Zhongnan Hospital of Wuhan University in Wuhan, China, from January 1 to January 28, 2020; final date of follow-up was February 3, 2020. Exposures Documented NCIP. Main Outcomes and Measures Epidemiological, demographic, clinical, laboratory, radiological, and treatment data were collected and analyzed. Outcomes of critically ill patients and noncritically ill patients were compared. Presumed hospital-related transmission was suspected if a cluster of health professionals or hospitalized patients in the same wards became infected and a possible source of infection could be tracked. Results Of 138 hospitalized patients with NCIP, the median age was 56 years (interquartile range, 42-68; range, 22-92 years) and 75 (54.3%) were men. Hospital-associated transmission was suspected as the presumed mechanism of infection for affected health professionals (40 [29%]) and hospitalized patients (17 [12.3%]). Common symptoms included fever (136 [98.6%]), fatigue (96 [69.6%]), and dry cough (82 [59.4%]). Lymphopenia (lymphocyte count, 0.8 × 109/L [interquartile range {IQR}, 0.6-1.1]) occurred in 97 patients (70.3%), prolonged prothrombin time (13.0 seconds [IQR, 12.3-13.7]) in 80 patients (58%), and elevated lactate dehydrogenase (261 U/L [IQR, 182-403]) in 55 patients (39.9%). Chest computed tomographic scans showed bilateral patchy shadows or ground glass opacity in the lungs of all patients. Most patients received antiviral therapy (oseltamivir, 124 [89.9%]), and many received antibacterial therapy (moxifloxacin, 89 [64.4%]; ceftriaxone, 34 [24.6%]; azithromycin, 25 [18.1%]) and glucocorticoid therapy (62 [44.9%]). Thirty-six patients (26.1%) were transferred to the intensive care unit (ICU) because of complications, including acute respiratory distress syndrome (22 [61.1%]), arrhythmia (16 [44.4%]), and shock (11 [30.6%]). The median time from first symptom to dyspnea was 5.0 days, to hospital admission was 7.0 days, and to ARDS was 8.0 days. Patients treated in the ICU (n = 36), compared with patients not treated in the ICU (n = 102), were older (median age, 66 years vs 51 years), were more likely to have underlying comorbidities (26 [72.2%] vs 38 [37.3%]), and were more likely to have dyspnea (23 [63.9%] vs 20 [19.6%]), and anorexia (24 [66.7%] vs 31 [30.4%]). Of the 36 cases in the ICU, 4 (11.1%) received high-flow oxygen therapy, 15 (41.7%) received noninvasive ventilation, and 17 (47.2%) received invasive ventilation (4 were switched to extracorporeal membrane oxygenation). As of February 3, 47 patients (34.1%) were discharged and 6 died (overall mortality, 4.3%), but the remaining patients are still hospitalized. Among those discharged alive (n = 47), the median hospital stay was 10 days (IQR, 7.0-14.0). Conclusions and Relevance In this single-center case series of 138 hospitalized patients with confirmed NCIP in Wuhan, China, presumed hospital-related transmission of 2019-nCoV was suspected in 41% of patients, 26% of patients received ICU care, and mortality was 4.3%.

16,635 citations

Journal ArticleDOI
TL;DR: It is expected that the availability of high-quality serological testing will be a key tool in the fight against SARS-CoV-2 as the limited circulation of the virus in the western United States.
Abstract: Coronavirus disease 2019 (COVID-19), the novel respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with severe morbidity and mortality. The rollout of diagnostic testing in the United States was slow, leading to numerous cases that were not tested for SARS-CoV-2 in February and March 2020 and necessitating the use of serological testing to determine past infections. Here, we evaluated the Abbott SARS-CoV-2 IgG test for detection of anti-SARS-CoV-2 IgG antibodies by testing 3 distinct patient populations. We tested 1,020 serum specimens collected prior to SARS-CoV-2 circulation in the United States and found one false positive, indicating a specificity of 99.90%. We tested 125 patients who tested reverse transcription-PCR (RT-PCR) positive for SARS-CoV-2 for whom 689 excess serum specimens were available and found that sensitivity reached 100% at day 17 after symptom onset and day 13 after PCR positivity. Alternative index value thresholds for positivity resulted in 100% sensitivity and 100% specificity in this cohort. We tested specimens from 4,856 individuals from Boise, ID, collected over 1 week in April 2020 as part of the Crush the Curve initiative and detected 87 positives for a positivity rate of 1.79%. These data demonstrate excellent analytical performance of the Abbott SARS-CoV-2 IgG test as well as the limited circulation of the virus in the western United States. We expect that the availability of high-quality serological testing will be a key tool in the fight against SARS-CoV-2.

517 citations

Related Papers (5)