scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

01 May 2017-Nano Energy (Elsevier)-Vol. 35, Iss: 35, pp 331-340
TL;DR: In this article, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1M KOH electrolyte, and the Ni2P nanoplates/graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh/kg/1 at a power density of 1301 W/kg−1, along with outstanding cycling performance.
About: This article is published in Nano Energy.The article was published on 2017-05-01. It has received 303 citations till now. The article focuses on the topics: Nanosheet & Supercapacitor.
Citations
More filters
Journal ArticleDOI
TL;DR: This critical Review focuses on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study.
Abstract: In this critical Review we focus on the evolution of the hybrid ion capacitor (HIC) from its early embodiments to its modern form, focusing on the key outstanding scientific and technological questions that necessitate further in-depth study. It may be argued that HICs began as aqueous systems, based on a Faradaic oxide positive electrode (e.g., Co3O4, RuOx) and an activated carbon ion-adsorption negative electrode. In these early embodiments HICs were meant to compete directly with electrical double layer capacitors (EDLCs), rather than with the much higher energy secondary batteries. The HIC design then evolved to be based on a wide voltage (∼4.2 V) carbonate-based battery electrolyte, using an insertion titanium oxide compound anode (Li4Ti5O12, LixTi5O12) versus a Li ion adsorption porous carbon cathode. The modern Na and Li architectures contain a diverse range of nanostructured materials in both electrodes, including TiO2, Li7Ti5O12, Li4Ti5O12, Na6LiTi5O12, Na2Ti3O7, graphene, hard carbon, soft carbo...

663 citations

Journal ArticleDOI
TL;DR: In this article, the current progress on carbon based pseudo-material composites for supercapacitor application in a well-systematic and easy manner which can guide the early researchers and emerging scientists dealing with or interested in supercapACitor.

640 citations

22 Feb 2006
TL;DR: In this paper, the authors present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors.
Abstract: In this paper, we wish to present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors. More specifically, the paper focuses on the approaches that have been used to increase the capacitance of the metal oxides and the cell voltage of the supercapacitor. It is shown that the cell voltage of an electrochemical supercapacitor can be increased significantly with the use of hybrid systems. The most relevant associations are Fe3O4 or activated carbon as the negative electrode and MnO2 as the positive. The cell voltage of the Fe3O4/MnO2 device is 1.8 V and this value was increased to 2.2 V by using activated carbon instead of Fe3O4. These two systems have shown superior behavior compared to a symmetric MnO2/MnO2 device which only works within a 1 V potential window in aqueous K2SO4. Furthermore, the activated carbon/MnO2 hybrid device exhibits a real power density of 605 W/kg (maximum power density =19.0 kW/kg) with an energy density of 17.3 Wh/kg. These values compete well with those of standard electrochemical double layer capacitors working in organic electrolytes.

501 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the analysis of recent research breakthroughs in the development of high electrochemical performance supercapacitors using transition metal oxides/hydroxides, sulfides, selenides and phosphides.

453 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

57,691 citations


"Low temperature synthesis of ternar..." refers methods in this paper

  • ...We evaluate the electronic band structure of NiCoP, Ni2P, and CoP using the Vienna Ab-initio Simulation Package [48]....

    [...]

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Abstract: New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

8,157 citations

Journal ArticleDOI
TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Abstract: In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

7,642 citations

Journal ArticleDOI
TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Abstract: Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

6,230 citations