scispace - formally typeset
Open AccessPosted Content

LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop

Reads0
Chats0
TLDR
This work proposes to amplify human effort through a partially automated labeling scheme, leveraging deep learning with humans in the loop, and constructs a new image dataset, LSUN, which contains around one million labeled images for each of 10 scene categories and 20 object categories.
Abstract
While there has been remarkable progress in the performance of visual recognition algorithms, the state-of-the-art models tend to be exceptionally data-hungry. Large labeled training datasets, expensive and tedious to produce, are required to optimize millions of parameters in deep network models. Lagging behind the growth in model capacity, the available datasets are quickly becoming outdated in terms of size and density. To circumvent this bottleneck, we propose to amplify human effort through a partially automated labeling scheme, leveraging deep learning with humans in the loop. Starting from a large set of candidate images for each category, we iteratively sample a subset, ask people to label them, classify the others with a trained model, split the set into positives, negatives, and unlabeled based on the classification confidence, and then iterate with the unlabeled set. To assess the effectiveness of this cascading procedure and enable further progress in visual recognition research, we construct a new image dataset, LSUN. It contains around one million labeled images for each of 10 scene categories and 20 object categories. We experiment with training popular convolutional networks and find that they achieve substantial performance gains when trained on this dataset.

read more

Citations
More filters
Posted Content

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

TL;DR: This work introduces a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrates that they are a strong candidate for unsupervised learning.
Proceedings Article

Wasserstein Generative Adversarial Networks

TL;DR: This work introduces a new algorithm named WGAN, an alternative to traditional GAN training that can improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches.
Posted Content

GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium

TL;DR: In this article, a two time-scale update rule (TTUR) was proposed for training GANs with stochastic gradient descent on arbitrary GAN loss functions, which has an individual learning rate for both the discriminator and the generator.
Posted Content

Improved Training of Wasserstein GANs

TL;DR: This work proposes an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input, which performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning.
Proceedings Article

Improved training of wasserstein GANs

TL;DR: The authors proposed to penalize the norm of the gradient of the critic with respect to its input to improve the training stability of Wasserstein GANs and achieve stable training of a wide variety of GAN architectures with almost no hyperparameter tuning.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.