scispace - formally typeset
Journal ArticleDOI

LTE-advanced: next-generation wireless broadband technology [Invited Paper]

Reads0
Chats0
TLDR
An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Abstract
LTE Release 8 is one of the primary broadband technologies based on OFDM, which is currently being commercialized. LTE Release 8, which is mainly deployed in a macro/microcell layout, provides improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operation and seamless integration with existing systems. LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience. Additionally, LTE Release 10 will support heterogeneous deployments where low-power nodes comprising picocells, femtocells, relays, remote radio heads, and so on are placed in a macrocell layout. The LTE-Advanced features enable one to meet or exceed IMT-Advanced requirements. It may also be noted that LTE Release 9 provides some minor enhancement to LTE Release 8 with respect to the air interface, and includes features like dual-layer beamforming and time-difference- of-arrival-based location techniques. In this article an overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed. This includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, uplink spatial multiplexing including extension to four-layer MIMO, and heterogeneous networks with emphasis on Type 1 and Type 2 relays. Finally, the performance of LTEAdvanced using IMT-A scenarios is presented and compared against IMT-A targets for full buffer and bursty traffic model.

read more

Citations
More filters
Proceedings ArticleDOI

Potential Design for Modulation and Coding Scheme in mmWave Multicarrier HetNets

TL;DR: The proposed MCS design can improve the average and 5-percentile user throughputs by 3% and 11% compared with the conventional, respectively, under the assumption that the signal bandwidth of a three-sector pico-eNB is 10 times wider than that of the typical macro- eNB.
Proceedings ArticleDOI

Inter-band carrier aggregation in heterogeneous networks: Design and assessment

TL;DR: Analysis reveals that the Heterogeneous Band (HetBand) non-contiguous CA technology can be efficiently applied to the design of next generation mobile broadband networks, given that the exploitation of both unlicensed and frequency dispersed bands might be a promising solution against the spectrum scarcity.
Journal ArticleDOI

Estimation techniques to measure subjective quality on live video streaming in Cloud Mobile Media services

TL;DR: The goal is to estimate and predict this subjective video quality metric, named Mean Opinion Score (MOS), in a holistic manner using different estimation techniques, such as Artificial Neural Networks, Factor Analysis and Multinomial Linear Regression, with Full Reference and Non Reference approaches.
Journal ArticleDOI

Orthogonal Frequency Division Multiplexing With Joint Subblocks Index Modulation

TL;DR: A novel technique to combine indices of a part of subblocks, called OFDM with joint subblocks index modulation (OFDM-JS-IM), which is capable of enhancing the spectral efficiency and energy efficiency without extra energy consumption compared to OFDM-IM is proposed.
References
More filters
Proceedings ArticleDOI

Overview of UMTS Air-Interface Evolution

TL;DR: A preliminary look at the air interface for Evolved UTRA (E-UTRA) and associated key technologies required to reach its design objectives are provided.
Proceedings ArticleDOI

On UMTS-LTE Physical Uplink Shared and Control Channels

TL;DR: The proposed channel estimation technique is shown to have significant gains in performance compared to other well known channel estimation techniques such as the maximum-likelihood (ML) and the inverse fast Fourier transform (IFFT) channel estimation methods.
Related Papers (5)
Trending Questions (1)
What is the difference between LTE and FIOS Internet?

LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience.