scispace - formally typeset
Journal ArticleDOI

LTE-advanced: next-generation wireless broadband technology [Invited Paper]

Reads0
Chats0
TLDR
An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Abstract
LTE Release 8 is one of the primary broadband technologies based on OFDM, which is currently being commercialized. LTE Release 8, which is mainly deployed in a macro/microcell layout, provides improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operation and seamless integration with existing systems. LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience. Additionally, LTE Release 10 will support heterogeneous deployments where low-power nodes comprising picocells, femtocells, relays, remote radio heads, and so on are placed in a macrocell layout. The LTE-Advanced features enable one to meet or exceed IMT-Advanced requirements. It may also be noted that LTE Release 9 provides some minor enhancement to LTE Release 8 with respect to the air interface, and includes features like dual-layer beamforming and time-difference- of-arrival-based location techniques. In this article an overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed. This includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, uplink spatial multiplexing including extension to four-layer MIMO, and heterogeneous networks with emphasis on Type 1 and Type 2 relays. Finally, the performance of LTEAdvanced using IMT-A scenarios is presented and compared against IMT-A targets for full buffer and bursty traffic model.

read more

Citations
More filters
Journal ArticleDOI

Spectrum Efficiency Analysis and Adaptive Transceiver Design for Single-Carrier Multiuser Transmission

TL;DR: An SC-adaptive transceiver is proposed based on unorthogonal frequency allocation and frequency-domain interference suppression to improve the system spectrum efficiency, and the proposed scheme has been shown to be effective by numerical results.
Journal ArticleDOI

CDF Scheduling Methods for Finite Rate Multiuser Systems With Limited Feedback

TL;DR: In this work, simple and practical CDF scheduling methods are developed that preserve the virtues ofCDF scheduling, namely fairness and effective use of multiuser diversity and converge rapidly with the number of data samples to the ideal case wherein perfect knowledge of the channel CDF is assumed.
Journal ArticleDOI

Efficient 3D Resource Management for Spectrum Aggregation in Cellular Networks

TL;DR: This paper introduces power domain into the conventional SA, and extends the resource block to a time-frequency-power spectrum unit termed resource cube, and proves that the proposed 3D RRM could achieve better energy efficiency than the RB-based ones.
Journal ArticleDOI

Energy-Efficient Mapping of LTE-A PHY Signal Processing Tasks on Microservers

TL;DR: This paper explores the use of machine intelligence for energy-efficient mapping of PHY signal processing on microservers, and uses deep learning to model latency and predict dynamic workload for on-demand resource allocation in a cross-layer run-time framework.
References
More filters
Proceedings ArticleDOI

Overview of UMTS Air-Interface Evolution

TL;DR: A preliminary look at the air interface for Evolved UTRA (E-UTRA) and associated key technologies required to reach its design objectives are provided.
Proceedings ArticleDOI

On UMTS-LTE Physical Uplink Shared and Control Channels

TL;DR: The proposed channel estimation technique is shown to have significant gains in performance compared to other well known channel estimation techniques such as the maximum-likelihood (ML) and the inverse fast Fourier transform (IFFT) channel estimation methods.
Related Papers (5)
Trending Questions (1)
What is the difference between LTE and FIOS Internet?

LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience.