scispace - formally typeset
Search or ask a question
Journal ArticleDOI

LTE-advanced: next-generation wireless broadband technology [Invited Paper]

01 Jun 2010-IEEE Wireless Communications (IEEE Press)-Vol. 17, Iss: 3, pp 10-22
TL;DR: An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Abstract: LTE Release 8 is one of the primary broadband technologies based on OFDM, which is currently being commercialized. LTE Release 8, which is mainly deployed in a macro/microcell layout, provides improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operation and seamless integration with existing systems. LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience. Additionally, LTE Release 10 will support heterogeneous deployments where low-power nodes comprising picocells, femtocells, relays, remote radio heads, and so on are placed in a macrocell layout. The LTE-Advanced features enable one to meet or exceed IMT-Advanced requirements. It may also be noted that LTE Release 9 provides some minor enhancement to LTE Release 8 with respect to the air interface, and includes features like dual-layer beamforming and time-difference- of-arrival-based location techniques. In this article an overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed. This includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, uplink spatial multiplexing including extension to four-layer MIMO, and heterogeneous networks with emphasis on Type 1 and Type 2 relays. Finally, the performance of LTEAdvanced using IMT-A scenarios is presented and compared against IMT-A targets for full buffer and bursty traffic model.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of recent progress and ongoing research works in the aspects of network architecture, QoS provisioning, scalability improving, reliability enhancing, energy saving, as well as standardization activities and case studies is provided.
Abstract: Fiber-Wireless (FiWi) network, as an integration of optical fiber network and wireless access network, has attracted intensive research interest and enjoyed significant growth in its applications over the last two decades. Besides bringing great opportunities for the development of FiWi networks, the new applications and techniques, like the emerging Internet of Things (IoT), raise unprecedented challenges in different aspects of FiWi integration. Based on such observation, we provide in this paper a comprehensive survey of recent progress and ongoing research works in the aspects of network architecture, QoS provisioning, scalability improving, reliability enhancing, energy saving, as well as standardization activities and case studies. Furthermore, new trends and challenging issues on future smart FiWi networks are identified and discussed in details.

125 citations


Cites background from "LTE-advanced: next-generation wirel..."

  • ...LTE Advanced (LTE-A) is essentially the evolution version of LTE aiming at even higher spectral efficiency and higher peak rates in both uplink and downlink [88]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that MU-MIMO only offers marginal performance gains with respect to single-user MIMO and calls for improved schemes for the upcoming releases.
Abstract: A relatively recent idea of extending the benefits of MIMO systems to multiuser scenarios seems promising in the context of achieving high data rates envisioned for future cellular standards after 3G (3rd Generation). Although substantial research has been done on the theoretical front, recent focus is on making Multiuser Multiple-Input Multiple-Output (MUMIMO) practically realizable. This paper presents an overview of the different MU-MIMO schemes included/being studied in 3GPP standardization from LTE (long-term evolution) to LTE Advanced. MU-MIMO system concepts and implementation aspects have been studied here. Various low-complexity receiver architectures are investigated, and their performance assessed through link-level simulations. Appealing performance offered by low-complexity interference aware (IA) receivers is notably emphasized. Furthermore, system level simulations for LTE Release 8 are provided. Interestingly, it is shown that MU-MIMO only offers marginal performance gains with respect to single-user MIMO. This arises from the limited MU-MIMO features included in Release 8 and calls for improved schemes for the upcoming releases.

123 citations

Journal ArticleDOI
TL;DR: Some major challenges of millimeter-wave communications encountered in the current 5G NR standard are discussed and some expected enhancements considered for the future beyond-5G standard are presented.
Abstract: Massive MIMO is one of the promising techniques to improve spectral efficiency and network performance for reaching its targeted multi-gigabit throughput in 5G systems. For 5G New Radio (NR) systems, one of the key differences compared to 4G systems is the utilization of high frequency millimeter wave (mmWave) bands in addition to sub-6GHz bands. To keep the complexity and implementation cost low, hybrid analog-digital beam-forming with large-scale antenna array has become a common design approach to address the issue of higher propagation loss as well as to improve spectral efficiency in mmWave communication in 5G NR. The 5G NR standard is designed to adapt to different beam-forming architecture and deployment scenarios. This paper provides the overview on beam management procedure according to the current 5G standardization progress. We discuss some major challenges of millimeter-wave communications encountered in the current 5G NR standard and present some expected enhancements considered for the future beyond-5G standard.

121 citations


Cites methods from "LTE-advanced: next-generation wirel..."

  • ...operation, codebook-based feedback is used, while for the time division duplex (TDD) operation, reciprocity-based sounding is used [11]....

    [...]

Journal ArticleDOI
TL;DR: This visionary paper first discusses the key features of the IoP paradigm along with the underlying research issues and challenges, and presents emerging networking and computing paradigms that are anticipating IoP.

120 citations

Journal ArticleDOI
TL;DR: Modem design issues related to carrier aggregation, enhanced ICIC for HetNet, detection of eight-layer transmission, reference signals for enhanced multi-antenna support, and HARQ buffer management are discussed.
Abstract: The commercial deployment of LTE Release 8 is gaining significant momentum all over the globe, and LTE is evolving to LTE-Advanced, which offers various new features to meet or exceed IMT-Advanced requirements. Since LTE-Advanced targets ambitious spectral efficiency and peak throughput, it poses tremendous system design challenges to operators and manufacturers, especially for mobile terminals. This article discusses modem design issues related to carrier aggregation, enhanced ICIC for HetNet, detection of eight-layer transmission, reference signals for enhanced multi-antenna support, and HARQ buffer management. We provide an overview of technical challenges and sketch the perspectives for tackling them to exploit the full benefits of the LTE-Advanced system.

118 citations

References
More filters
Proceedings ArticleDOI
01 Sep 2006
TL;DR: A preliminary look at the air interface for Evolved UTRA (E-UTRA) and associated key technologies required to reach its design objectives are provided.
Abstract: With the emergence of packet-based wireless broadband systems such as 802.16e, it is evident that a comprehensive evolution of the universal mobile telecommunications system specifications is required to remain competitive. As a result, work has begun on long term evolution (LTE) of the UMTS terrestrial radio access and radio access network aimed for commercial deployment in 2010. Goals for the evolved system include support for improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operations and seamless integration with existing systems. To reach these goals, a new design for the air interface is envisioned. This paper provides a preliminary look at the air interface for Evolved UTRA (E-UTRA) and associated key technologies required to reach its design objectives. Initial E-UTRA system performance results show a 2 to 3x improvement over a reference Rel-6 UMTS system configuration [1, 2] for both uplink and downlink.

30 citations

Proceedings ArticleDOI
24 Oct 2008
TL;DR: The proposed channel estimation technique is shown to have significant gains in performance compared to other well known channel estimation techniques such as the maximum-likelihood (ML) and the inverse fast Fourier transform (IFFT) channel estimation methods.
Abstract: The performance of the uplink physical channel of the 3GPP LTE system is considered in this paper. Assuming a single user spatial division multiple access transmission scheme, where users' signals are transmitted over different subcarriers, a low complexity channel estimation technique is proposed for the physical uplink shared channel (PUSCH). The proposed channel estimation technique is shown to have significant gains in performance compared to other well known channel estimation techniques such as the maximum-likelihood (ML) and the inverse fast Fourier transform (IFFT) channel estimation methods [5]. Simulation results for different channel models and modulation and coding schemes (MCS) using incremental redundancy (IR) based hybrid automatic repeat request (HARQ) operation are also shown. Finally, a robust detection scheme is proposed for the physical uplink control channel (PUCCH) and simulation results are summarized.

10 citations


"LTE-advanced: next-generation wirel..." refers methods in this paper

  • ...The DFT precoding operation is performed to reduce the cubic metric (CM) of the signal, leading to higher maximum transmit power [2]....

    [...]

Trending Questions (1)
What is the difference between LTE and FIOS Internet?

LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience.