scispace - formally typeset
Search or ask a question
Proceedings Article

LTL Model Cheking of Service-Based Business Processes in the Cloud.

01 Jan 2015-pp 398-403
TL;DR: In this article, the authors propose a bottom-up approach to check the correct interaction between different service-based business processes distributed over a cloud environment and which may be provided by various organizations.
Abstract: Cloud environments are being increasingly used for deploying and executing business processes and particularly service-based business processes (SBPs). In this paper, we propose a bottom-up approach to check the correct interaction between different SBPs distributed over a Cloud environment and which may be provided by various organizations. The whole system's model being unavailable, an up-down analysis approach is not appropriate. To check the correctness of the composition of several SBPs communicating asynchronously and sharing resources (hardware, platform, and software), we consider temporal properties that can be expressed with the LTL logic. Each part of the whole composite SBP exposes its abstract model, represented by a Symbolic Observation Graph (SOG), to allow the correct collaboration with possible partners in the Cloud. The SOG is adapted in order to reduce the verification of the entire composite model to the verification of the composition of the SOG-based abstractions.
References
More filters
Journal ArticleDOI
Gerard J. Holzmann1
01 May 1997
TL;DR: An overview of the design and structure of the verifier, its theoretical foundation, and an overview of significant practical applications are given.
Abstract: SPIN is an efficient verification system for models of distributed software systems. It has been used to detect design errors in applications ranging from high-level descriptions of distributed algorithms to detailed code for controlling telephone exchanges. The paper gives an overview of the design and structure of the verifier, reviews its theoretical foundation, and gives an overview of significant practical applications.

4,159 citations

Journal ArticleDOI
TL;DR: This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.
Abstract: Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.

2,862 citations

Book
01 Jan 1992
TL;DR: Temporal logic is a formal tool/language which yields excellent results in specifying reactive systems, and this volume (the first two), offers an introduction to temporal logic and to the computational model for reactive programs which has been developed by the authors as mentioned in this paper.
Abstract: Reactive systems are computing systems which are interactive, such as real-time systems, operating systems, concurrent systems and control systems. These are among the most difficult computing systems to program. Temporal logic is a formal tool/language which yields excellent results in specifying reactive systems, and this volume (the first of two), offers an introduction to temporal logic and to the computational model for reactive programs which has been developed by the authors.

2,650 citations

Journal ArticleDOI
TL;DR: The OBDD data structure is described and a number of applications that have been solved by OBDd-based symbolic analysis are surveyed.
Abstract: Ordered Binary-Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satisfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as graph algorithms on OBDD data structures. Using OBDDs, a wide variety of problems can be solved through symbolic analysis. First, the possible variations in system parameters and operating conditions are encoded with Boolean variables. Then the system is evaluated for all variations by a sequence of OBDD operations. Researchers have thus solved a number of problems in digital-system design, finite-state system analysis, artificial intelligence, and mathematical logic. This paper describes the OBDD data structure and surveys a number of applications that have been solved by OBDD-based symbolic analysis.

2,196 citations

Proceedings ArticleDOI
17 May 2004
TL;DR: It is shown that a large class of composite web services with unbounded input queues can be completely verified using a finite state model checker such as SPIN, and a set of sufficient conditions that guarantee synchronizability and that can be checked statically are given.
Abstract: This paper presents a set of tools and techniques for analyzing interactions of composite web services which are specified in BPEL and communicate through asynchronous XML messages. We model the interactions of composite web services as conversations, the global sequence of messages exchanged by the web services. As opposed to earlier work, our tool-set handles rich data manipulation via XPath expressions. This allows us to verify designs at a more detailed level and check properties about message content. We present a framework where BPEL specifications of web services are translated to an intermediate representation, followed by the translation of the intermediate representation to a verification language. As an intermediate representation we use guarded automata augmented with unbounded queues for incoming messages, where the guards are expressed as XPath expressions. As the target verification language we use Promela, input language of the model checker SPIN. Since SPIN model checker is a finite-state verification tool we can only achieve partial verification by fixing the sizes of the input queues in the translation. We propose the concept of synchronizability to address this problem. We show that if a composite web service is synchronizable, then its conversation set remains same when asynchronous communication is replaced with synchronous communication. We give a set of sufficient conditions that guarantee synchronizability and that can be checked statically. Based on our synchronizability results, we show that a large class of composite web services with unbounded input queues can be completely verified using a finite state model checker such as SPIN.

713 citations