scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lung Ultrasound in the Diagnosis of COVID-19 Pneumonia: Not Always and Not Only What Is COVID-19 Glitters""

TL;DR: In this paper, lung ultrasound (LUS) has been extensively employed to evaluate lung involvement and proposed as a useful screening tool for early diagnosis in the emergency department (ED), prehospitalization triage, and treatment monitoring of COVID-19 pneumonia.
Abstract: Background: In the current coronavirus disease-2019 (COVID-19) pandemic, lung ultrasound (LUS) has been extensively employed to evaluate lung involvement and proposed as a useful screening tool for early diagnosis in the emergency department (ED), prehospitalization triage, and treatment monitoring of COVID-19 pneumonia. However, the actual effectiveness of LUS in characterizing lung involvement in COVID-19 is still unclear. Our aim was to evaluate LUS diagnostic performance in assessing or ruling out COVID-19 pneumonia when compared with chest CT (gold standard) in a population of SARS-CoV-2-infected patients. Methods: A total of 260 consecutive RT-PCR confirmed SARS-CoV-2-infected patients were included in the study. All the patients underwent both chest CT scan and concurrent LUS at admission, within the first 6-12 h of hospital stay. Results: Chest CT scan was considered positive when showing a "typical" or "indeterminate" pattern for COVID-19, according to the RSNA classification system. Disease prevalence for COVID-19 pneumonia was 90.77%. LUS demonstrated a sensitivity of 56.78% in detecting lung alteration. The concordance rate for the assessment of abnormalities by both methods increased in the case of peripheral distribution and middle-lower lung location of lesions and in cases of more severe lung involvement. A total of nine patients had a "false-positive" LUS examination. Alternative diagnosis included chronic heart disease (six cases), bronchiectasis (two cases), and subpleural emphysema (one case). LUS specificity was 62.50%. Collateral findings indicative of overlapping conditions at chest CT were recorded also in patients with COVID-19 pneumonia and appeared distributed with increasing frequency passing from the group with mild disease (17 cases) to that with severe disease (40 cases). Conclusions: LUS does not seem to be an adequate tool for screening purposes in the ED, due to the risk of missing some lesions and/or to underestimate the actual extent of the disease. Furthermore, the not specificity of LUS implies the possibility to erroneously classify pre-existing or overlapping conditions as COVID-19 pneumonia. It seems more safe to integrate a positive LUS examination with clinical, epidemiological, laboratory, and radiologic findings to suggest a "virosis." Viral testing confirmation is always required.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work aims to develop a novel deep learning-based computationally efficient medical imaging framework for effective modeling and early diagnosis of COVID-19 from chest x-ray and computed tomography images by exploiting efficient convolutional neural network to extract high-level features, followed by classification mechanisms for CO VID-19 diagnosis in medical image data.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic has caused a major outbreak around the world with severe impact on health, human lives, and economy globally. One of the crucial steps in fighting COVID-19 is the ability to detect infected patients at early stages and put them under special care. Detecting COVID-19 from radiography images using computational medical imaging method is one of the fastest ways to diagnose the patients. However, early detection with significant results is a major challenge, given the limited available medical imaging data and conflicting performance metrics. Therefore, this work aims to develop a novel deep learning-based computationally efficient medical imaging framework for effective modeling and early diagnosis of COVID-19 from chest x-ray and computed tomography images. The proposed work presents “WEENet” by exploiting efficient convolutional neural network to extract high-level features, followed by classification mechanisms for COVID-19 diagnosis in medical image data. The performance of our method is evaluated on three benchmark medical chest x-ray and computed tomography image datasets using eight evaluation metrics including a novel strategy of cross-corpse evaluation as well as robustness evaluation, and the results are surpassing state-of-the-art methods. The outcome of this work can assist the epidemiologists and healthcare authorities in analyzing the infected medical chest x-ray and computed tomography images, management of the COVID-19 pandemic, bridging the early diagnosis, and treatment gap for Internet of Medical Things environments.

5 citations

Journal ArticleDOI
TL;DR: CT and LDCT with soft and sharp reconstructions are equally reliable for COVID-19 reporting using the “CT 0-4” scale.
Abstract: Computed tomography (CT) has been an essential diagnostic tool during the COVID-19 pandemic. The study aimed to develop an optimal CT protocol in terms of safety and reliability. For this, we assessed the inter-observer agreement between CT and low-dose CT (LDCT) with soft and sharp kernels using a semi-quantitative severity scale in a prospective study (Moscow, Russia). Two consecutive scans with CT and LDCT were performed in a single visit. Reading was performed by ten radiologists with 3–25 years’ experience. The study included 230 patients, and statistical analysis showed LDCT with a sharp kernel as the most reliable protocol (percentage agreement 74.35 ± 43.77%), but its advantage was marginal. There was no significant correlation between radiologists’ experience and average percentage agreement for all four evaluated protocols. Regarding the radiation exposure, CTDIvol was 3.6 ± 0.64 times lower for LDCT. In conclusion, CT and LDCT with soft and sharp reconstructions are equally reliable for COVID-19 reporting using the “CT 0-4” scale. The LDCT protocol allows for a significant decrease in radiation exposure but may be restricted by body mass index.

4 citations

Journal ArticleDOI
14 Oct 2022-PLOS ONE
TL;DR: Summarized score of BLUE-LUSS can be an important, easy-to-perform adjunct tool for assessing and quantifying lung pathology in critically ill ventilated patients at bedside, especially for the P/F ratio.
Abstract: Introduction Bedside lung ultrasound has gained a key role in each segment of the treatment chain during the COVID-19 pandemic. During the diagnostic assessment of the critically ill patients in ICUs, it is highly important to maximize the amount and quality of gathered information while minimizing unnecessary interventions (e.g. moving/rotating the patient). Another major factor is to reduce the risk of infection and the workload of the staff. Objectives To serve these significant issues we constructed a feasibility study, in which we used a single-operator technique without moving the patient, only assessing the easily achievable lung regions at conventional BLUE points. We hypothesized that calculating this ‘BLUE lung ultrasound score’ (BLUE-LUSS) is a reasonable clinical tool. Furthermore, we used both longitudinal and transverse scans to measure their reliability and assessed the interobserver variability as well. Methods University Intensive Care Unit based, single-center, prospective, observational study was performed on 24 consecutive SARS-CoV2 RT-PCR positive, mechanically ventilated critically ill patients. Altogether 400 loops were recorded, rated and assessed off-line by 4 independent intensive care specialists (each 7+ years of LUS experience). Results Intraclass correlation values indicated good reliability for transversal and longitudinal qLUSS scores, while we detected excellent interrater agreement of both cLUSS calculation methods. All of our LUS scores correlated inversely and significantly to the P/F values. Best correlation was achieved in the case of longitudinal qLUSS (r = -0.55, p = 0.0119). Conclusion Summarized score of BLUE-LUSS can be an important, easy-to-perform adjunct tool for assessing and quantifying lung pathology in critically ill ventilated patients at bedside, especially for the P/F ratio. The best agreement for the P/F ratio can be achieved with the longitudinal scans. Regarding these findings, assessing BLUE-points can be extended with the BLUE-LUSS for daily routine using both transverse and longitudinal views.

2 citations

Journal ArticleDOI
TL;DR: In this article , a thoracic ultrasound (TUS) screening protocol was proposed to detect interstitial lung abnormalities (ILA) and lung cancer in a population of asymptomatic high-risk subjects.
Abstract: Objectives We validated a screening protocol in which thoracic ultrasound (TUS) acts as a first-line complementary imaging technique in selecting patients which may deserve a second-line low-dose high resolution computed tomography (HRCT) scan among a population of asymptomatic high-risk subjects for interstitial lung abnormalities (ILA) and lung cancer. Due to heavy environmental pollution burden, the district Tamburi of Taranto has been chosen as “case study” for this purpose. Methods From July 2018 to October 2020, 677 patients aged between 45 and 65 year and who had been living in the Tamburi district of Taranto for at least 10 years were included in the study. After demographic, clinical and risk factor exposition data were collected, each participant underwent a complete TUS examination. These subjects were then asked to know if they agreed to perform a second-level examination by low-dose HRCT scan. Results On a total of 167 subjects (24.7%) who agreed to undergo a second-level HRCT, 85 patients (50.9%) actually showed pleuro-pulmonary abnormalities. Interstitial abnormalities were detected in a total of 36 patients on HRCT scan. In particular, 34 participants presented subpleural ILAs, that were classified in the fibrotic subtype in 7 cases. The remaining 2 patients showed non-subpleural interstitial abnormalities. Subpleural nodules were observed in 46 patients. TUS showed an overall diagnostic accuracy of 88.6% in detecting pleuro-pulmonary abnormalities in comparison with HRCT scan, with a sensitivity of 95.3%, a specificity of 81.7%, a positive predictive value of 84.4% and a negative predictive value of 94.4%. The matched evaluation of specific pulmonary abnormalities on HRTC scan (i.e., interstitial abnormalities or pulmonary nodules) with determinate sonographic findings revealed a reduction in both TUS sensibility and specificity. Focusing TUS evaluation on the assessment of interstitial abnormalities, a thickened pleural line showed a sensitivity of 63.9% and a specificity of 69.5%, hypoechoic striae showed a sensitivity of 38.9% and a specificity of 90.1% and subpleural nodules showed a sensitivity of 58.3% and a specificity of 77.1%. Regarding to the assessment of subpleural nodules, TUS showed a sensitivity of 60.9% and a specificity of 81.0%. However, the combined employment of TUS examination and HRCT scans allowed to identify 34 patients with early subpleural ILA and to detect three suspicious pulmonary nodules (of which two were intraparenchymal and one was a large subpleural mass), which revealed to be lung cancers on further investigations. Conclusion A first-line TUS examination might aid the identification of subjects highly exposed to environmental pollution, who could benefit of a second-line low-dose HRCT scan to find early interstitial lung diseases as well as lung cancer. Protocol registration code PLEURO-SCREENING-V1.0_15 Feb, 17.
Journal ArticleDOI
TL;DR: In this article , the key aspects of lung ultrasound and lung ultrasound scores were clarified to standardize their clinical use in a non-pandemic context, and a narrative summary of the results was made.
Abstract: The WHO recently declared that COVID-19 no longer constitutes a public health emergency of international concern; however, lessons learned through the pandemic should not be left behind. Lung ultrasound was largely utilized as a diagnostic tool thanks to its feasibility, easy application, and the possibility to reduce the source of infection for health personnel. Lung ultrasound scores consist of grading systems used to guide diagnosis and medical decisions, owning a good prognostic value. In the emergency context of the pandemic, several lung ultrasound scores emerged either as new scores or as modifications of pre-existing ones. Our aim is to clarify the key aspects of lung ultrasound and lung ultrasound scores to standardize their clinical use in a non-pandemic context. The authors searched on PubMed for articles related to “COVID-19”, “ultrasound”, and “Score” until 5 May 2023; other keywords were “thoracic”, “lung”, “echography”, and “diaphragm”. A narrative summary of the results was made. Lung ultrasound scores are demonstrated to be an important tool for triage, prediction of severity, and aid in medical decisions. Ultimately, the existence of numerous scores leads to a lack of clarity, confusion, and an absence of standardization.
References
More filters
Journal ArticleDOI
TL;DR: Members of the Fleischner Society compiled a glossary of terms for thoracic imaging that replaces previous glossaries published in 1984 and 1996 for Thoracic radiography and computed tomography, respectively.
Abstract: Members of the Fleischner Society compiled a glossary of terms for thoracic imaging that replaces previous glossaries published in 1984 and 1996 for thoracic radiography and computed tomography (CT), respectively. The need to update the previous versions came from the recognition that new words have emerged, others have become obsolete, and the meaning of some terms has changed. Brief descriptions of some diseases are included, and pictorial examples (chest radiographs and CT scans) are provided for the majority of terms.

3,299 citations

Journal ArticleDOI
TL;DR: With a longer time after the onset of symptoms, CT findings were more frequent, including consolidation, bilateral and peripheral disease, greater total lung involvement, linear opacities, “crazy-paving” pattern and the “reverse halo” sign.
Abstract: In this retrospective study, chest CTs of 121 symptomatic patients infected with coronavirus disease-19 (COVID-19) from four centers in China from January 18, 2020 to February 2, 2020 were reviewed for common CT findings in relationship to the time between symptom onset and the initial CT scan (i.e. early, 0-2 days (36 patients), intermediate 3-5 days (33 patients), late 6-12 days (25 patients)). The hallmarks of COVID-19 infection on imaging were bilateral and peripheral ground-glass and consolidative pulmonary opacities. Notably, 20/36 (56%) of early patients had a normal CT. With a longer time after the onset of symptoms, CT findings were more frequent, including consolidation, bilateral and peripheral disease, greater total lung involvement, linear opacities, "crazy-paving" pattern and the "reverse halo" sign. Bilateral lung involvement was observed in 10/36 early patients (28%), 25/33 intermediate patients (76%), and 22/25 late patients (88%).

2,086 citations

Journal ArticleDOI
01 Nov 2016-BMJ Open
TL;DR: The rationale for each of the 30 items on the STARD 2015 checklist is clarified, and what is expected from authors in developing sufficiently informative study reports is described.
Abstract: Diagnostic accuracy studies are, like other clinical studies, at risk of bias due to shortcomings in design and conduct, and the results of a diagnostic accuracy study may not apply to other patient groups and settings. Readers of study reports need to be informed about study design and conduct, in sufficient detail to judge the trustworthiness and applicability of the study findings. The STARD statement (Standards for Reporting of Diagnostic Accuracy Studies) was developed to improve the completeness and transparency of reports of diagnostic accuracy studies. STARD contains a list of essential items that can be used as a checklist, by authors, reviewers and other readers, to ensure that a report of a diagnostic accuracy study contains the necessary information. STARD was recently updated. All updated STARD materials, including the checklist, are available at http://www.equator-network.org/reporting-guidelines/stard. Here, we present the STARD 2015 explanation and elaboration document. Through commented examples of appropriate reporting, we clarify the rationale for each of the 30 items on the STARD 2015 checklist, and describe what is expected from authors in developing sufficiently informative study reports.

1,217 citations

Journal ArticleDOI
TL;DR: Chest x-ray findings in COVID-19 patients frequently showed bilateral lower zone consolidation which peaked at 10-12 days from symptom onset, and correlate these with real time reverse transcription polymerase chain reaction (RT-PCR) testing for SARS-Cov-2 nucleic acid.
Abstract: Background Current coronavirus disease 2019 (COVID-19) radiologic literature is dominated by CT, and a detailed description of chest radiography appearances in relation to the disease time course is lacking. Purpose To describe the time course and severity of findings of COVID-19 at chest radiography and correlate these with real-time reverse transcription polymerase chain reaction (RT-PCR) testing for severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, nucleic acid. Materials and Methods This is a retrospective study of patients with COVID-19 confirmed by using RT-PCR and chest radiographic examinations who were admitted across four hospitals and evaluated between January and March 2020. Baseline and serial chest radiographs (n = 255) were reviewed with RT-PCR. Correlation with concurrent CT examinations (n = 28) was performed when available. Two radiologists scored each chest radiograph in consensus for consolidation, ground-glass opacity, location, and pleural fluid. A severity index was determined for each lung. The lung scores were summed to produce the final severity score. Results The study was composed of 64 patients (26 men; mean age, 56 years ± 19 [standard deviation]). Of these, 58 patients had initial positive findings with RT-PCR (91%; 95% confidence interval: 81%, 96%), 44 patients had abnormal findings at baseline chest radiography (69%; 95% confidence interval: 56%, 80%), and 38 patients had initial positive findings with RT-PCR testing and abnormal findings at baseline chest radiography (59%; 95% confidence interval: 46%, 71%). Six patients (9%) showed abnormalities at chest radiography before eventually testing positive for COVID-19 with RT-PCR. Sensitivity of initial RT-PCR (91%; 95% confidence interval: 83%, 97%) was higher than that of baseline chest radiography (69%; 95% confidence interval: 56%, 80%) (P = .009). Radiographic recovery (mean, 6 days ± 5) and virologic recovery (mean, 8 days ± 6) were not significantly different (P = .33). Consolidation was the most common finding (30 of 64; 47%) followed by ground-glass opacities (21 of 64; 33%). Abnormalities at chest radiography had a peripheral distribution (26 of 64; 41%) and lower zone distribution (32 of 64; 50%) with bilateral involvement (32 of 64; 50%). Pleural effusion was uncommon (two of 64; 3%). The severity of findings at chest radiography peaked at 10-12 days from the date of symptom onset. Conclusion Findings at chest radiography in patients with coronavirus disease 2019 frequently showed bilateral lower zone consolidation, which peaked at 10-12 days from symptom onset. © RSNA, 2020.

1,157 citations

Journal ArticleDOI
Zheng Ye1, Yun Zhang1, Yi Wang1, Zixiang Huang1, Bin Song1 
TL;DR: Ground glass opacities, consolidation, reticular pattern, and crazy paving pattern are typical CT manifestations of COVID-19, and emerging atypical CT manifestations, including airway changes, pleural changes, fibrosis, nodules, etc., were demonstrated in patients.
Abstract: Coronavirus disease 2019 (COVID-19) outbreak, first reported in Wuhan, China, has rapidly swept around the world just within a month, causing global public health emergency. In diagnosis, chest computed tomography (CT) manifestations can supplement parts of limitations of real-time reverse transcription polymerase chain reaction (RT-PCR) assay. Based on a comprehensive literature review and the experience in the frontline, we aim to review the typical and relatively atypical CT manifestations with representative COVID-19 cases at our hospital, and hope to strengthen the recognition of these features with radiologists and help them make a quick and accurate diagnosis. Key Points • Ground glass opacities, consolidation, reticular pattern, and crazy paving pattern are typical CT manifestations of COVID-19. • Emerging atypical CT manifestations, including airway changes, pleural changes, fibrosis, nodules, etc., were demonstrated in COVID-19 patients. • CT manifestations may associate with the progression and prognosis of COVID-19.

1,002 citations

Related Papers (5)