scispace - formally typeset
Search or ask a question
Journal ArticleDOI

LXII.—The abnormality of strong electrolytes. Part III. The osmotic pressure of salt solutions and equilibrium between electrolytes

01 Jan 1918-Journal of The Chemical Society, Transactions (The Royal Society of Chemistry)-Vol. 113, pp 707-715
About: This article is published in Journal of The Chemical Society, Transactions.The article was published on 1918-01-01 and is currently open access. It has received 7 citations till now. The article focuses on the topics: Osmotic pressure.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The Yukawa potential has three important mathematical properties that are apparently unrelated but, in fact, closely linked as discussed by the authors, and these properties have led to the appearance of the potential in a great variety of different physical problems.
Abstract: The Yukawa potential, φ(r)=A(λr)-1eλr, has three important mathematical properties that are apparently unrelated but, in fact, closely linked These properties have led to the appearance of the potential in a great variety of different physical problems These ramifications are discussed in roughly chronological order The potential is generalized to spaces of dimensionality other than 3, and the properties of this generalized potential are explored

103 citations

Journal ArticleDOI
TL;DR: A model of electrolyte solution is proposed that allows us to calculate gamma without using fitting parameters where the (upper) concentration exists at which the electrolyte solutions exhibits gamma = 1 (molality scale).
Abstract: In this paper, we deal with the mean activity coefficient, γ, of electrolyte solutions. The case γ ≤ 1 is investigated. As is generally recognized, the most accepted models (specific ion interaction/Pitzer theory) have the disadvantage of the dependence on semiempirical parameters. These are not directly accessible from experimental measurements, but can only be estimated by means of best-fitting numerical techniques from experimental data. In the general context of research devoted to the achievement of some reduction of complexity, we propose a model of electrolyte solution that allows us to calculate γ without using fitting parameters where the (upper) concentration exists at which the electrolyte solution exhibits γ = 1 (molality scale). In the remaining cases, we show that a unique parameter is required, that is, the concentration that should ideally give γ = 1 for the electrolyte. Compared to other models that do not require adjustable parameters, the present one is generally applicable over a wider...

25 citations

Journal ArticleDOI
TL;DR: In this article, the defect concentrations as well as defect energies, including excess energies, are computed as a function of temperature by molecular-dynamics and Monte Carlo simulations based on a classical semi-empirical potential.
Abstract: The equilibrium concentration of ionic and electronic charge carriers in ionic crystals as a function of temperature, concentration of dopants, and chemical environment is phenomenologically well understood as long as these point defects can be considered sufficiently dilute. However, there are cases, usually at temperatures close to the melting point, where the defects appear in higher concentrations. In these cases interactions come into play and cause anomalous increases in the conductivity or even phase transitions. Recently Hainovsky and Maier showed that for various Frenkel disordered materials this anomalous conductivity increase at high temperature can be described by a cube root term in the chemical potential of the defects. This quasi-Madelung approach does not only allow ionic conductivities and heat capacities to be computed, it also leads to a phenomenological understanding of the solid–liquid or superionic transition temperatures. In the present study we analyze this approach on the atomistic level for AgI: The defect concentrations as well as defect energies, including excess energies, are computed as a function of temperature by molecular-dynamics and Monte Carlo simulations based on a classical semiempirical potential. The simulations support the cube-root model, yield approximately the same interaction constants and show that the corrections in the chemical potential are of an energetic nature. In agreement with structural expectations, the simulations reveal that two different kinds of interstitials are present: Octahedral interstitials, which essentially determine the ionic transport at higher temperature, and tetrahedral ones, which remain substantially associated with the vacancies. It is shown how these refinements have to be introduced into the cube root.

19 citations

Journal ArticleDOI
TL;DR: In this article , a comparison between a numerical solution of the Poisson-Boltzmann equation and the analytical solution of its linearized version through the Debye-Hückel equations considering both size-dissimilar and common ion diameters approaches is presented.
Abstract: This work presents a comparison between a numerical solution of the Poisson-Boltzmann equation and the analytical solution of its linearized version through the Debye-Hückel equations considering both size-dissimilar and common ion diameters approaches. In order to verify the limits in which the linearized Poisson-Boltzmann equation is capable to satisfactorily reproduce the nonlinear version of Poisson-Boltzmann, we calculate mean ionic activity coefficients for different types of electrolytes as various temperatures. The divergence between the linearized and full Poisson-Boltzmann equations is higher for lower molalities, and both solutions tend to converge toward higher molalities. For electrolytes of lower valencies (1:1, 1:2, 2:1, and 1:3) and higher distances of closest approach, the full version of the Debye-Hückel equation is capable of representing the activity coefficients with a low divergence from the nonlinear Poisson-Boltzmann. The size-dissimilar full version of Debye-Hückel represents a clear improvement over the extended version that uses only common ion diameters when compared to the numerical solution of the Poisson-Boltzmann equation. We have derived a salt-specific index (Θ) to gradually classify electrolytes in order of increasing influence of nonlinear ion-ion interactions, which differentiate the Debye-Hückel equations from the nonlinear Poisson-Boltzmann equation.

10 citations