scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lymph node metastasis-derived gastric cancer cells educate bone marrow-derived mesenchymal stem cells via YAP signaling activation by exosomal Wnt5a

02 Mar 2021-Oncogene (Nature Publishing Group)-Vol. 40, Iss: 12, pp 2296-2308
TL;DR: In this paper, exosomal Wnt5a was identified as key protein mediating LNM-GCs education of BM-MSCs, which was verified by analysis of serum exosomes collected from GC patients with LNM.
Abstract: Lymph node metastasis (LNM), a common metastatic gastric-cancer (GC) route, is closely related to poor prognosis in GC patients. Bone marrow-derived mesenchymal stem cells (BM-MSCs) preferentially engraft at metastatic lesions. Whether BM-MSCs are specifically reprogrammed by LNM-derived GC cells (LNM-GCs) and incorporated into metastatic LN microenvironment to prompt GC malignant progression remains unknown. Herein, we found that LNM-GCs specifically educated BM-MSCs via secretory exosomes. Exosomal Wnt5a was identified as key protein mediating LNM-GCs education of BM-MSCs, which was verified by analysis of serum exosomes collected from GC patients with LNM. Wnt5a-enriched exosomes induced YAP dephosphorylation in BM-MSCs, whereas Wnt5a-deficient exosomes exerted the opposite effect. Inhibition of YAP signaling by verteporfin blocked LNM-GC exosome- and serum exosome-mediated reprogramming in BM-MSCs. Analysis of MSC-like cells obtained from metastatic LN tissues of GC patients (GLN-MSCs) confirmed that BM-MSCs incorporated into metastatic LN microenvironment, and that YAP activation participated in maintaining their tumor-promoting phenotype and function. Collectively, our results show that LNM-GCs specifically educated BM-MSCs via exosomal Wnt5a-elicited activation of YAP signaling. This study provides new insights into the mechanisms of LNM in GC and BM-MSC reprogramming, and will provide potential therapeutic targets and detection indicators for GC patients with LNM.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Hao Wu1, Mengdi Fu1, Jin Liu1, Wei Chong1, Zhen Fang1, Fengying Du1, Yang Liu1, Liang Shang1, Leping Li1 
TL;DR: In this article, the role of small extracellular vesicles (sEVs) in Gastric Cancer (GC) is summarized and the clinical application prospects in the future are highlighted.
Abstract: Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.

35 citations

Journal ArticleDOI
06 Aug 2021
TL;DR: The journey of extracellular vesicles from the primary tumor to the future metastatic organ, with a focus on the mechanisms used by EVs to target organs with a specific tropism (i.e., organotropism), and the formation of a pro‐inflammatory and immuno‐tolerant microenvironment is described.
Abstract: Among a plethora of functions, extracellular vesicles released by primary tumors spread in the organism and reach distant organs where they can induce the formation of a premetastatic niche. This constitutes a favorable microenvironment for circulating tumor cells which facilitates their seeding and colonization. In this review, we describe the journey of extracellular vesicles (EVs) from the primary tumor to the future metastatic organ, with a focus on the mechanisms used by EVs to target organs with a specific tropism (i.e., organotropism). We then highlight important tumor EV cargos in the context of premetastatic niche formation and summarize their known effects on extracellular matrix remodeling, angiogenesis, vessel permeabilization, resident cell activation, recruitment of foreign cells, and ultimately the formation of a pro-inflammatory and immuno-tolerant microenvironment. Finally, we discuss current experimental limitations and remaining opened questions in light of metastatic diagnosis and potential therapies targeting PMN formation.

14 citations

Journal ArticleDOI
02 Jul 2021-Cancers
TL;DR: In this paper, the authors discuss how extracellular vesicles (EVs) participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as "the hallmarks of cancer".
Abstract: Cancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their "traits" to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as "cell competition". This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as "the hallmarks of cancer" defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed that Wnt5a is integrated within a larger regulatory circuit involving β-catenin, YAP/TAZ, and LATS1/2.

7 citations

Journal ArticleDOI
TL;DR: In this paper, Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression, and they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping.
Abstract: Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited "naive" MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
Abstract: With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.

13,073 citations

Journal ArticleDOI
21 Dec 2012-Cell
TL;DR: It is reported that fibroblast-secreted exosomes promote breast cancer cell (BCC) protrusive activity and motility via Wnt-planar cell polarity (PCP) signaling and it is demonstrated that exosome-stimulated BCC protrusions display mutually exclusive localization of the core PCP complexes.

1,109 citations

Journal ArticleDOI
TL;DR: It is demonstrated that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells and an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins is demonstrated.
Abstract: Wnt signalling has important roles during development and in many diseases As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6 Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins

817 citations

Journal ArticleDOI
13 Aug 2015-Cell
TL;DR: This work establishes YAP/TAZ as critical mediators of alternative Wnt signaling, including gene expression, osteogenic differentiation, cell migration, and antagonism of Wnt/β-catenin signaling.

516 citations

Journal ArticleDOI
TL;DR: An updated review of the Hippo pathway is provided; its roles in development, homeostasis, regeneration, and diseases are discussed; and outstanding questions for future investigation and opportunities for Hippo-targeted therapies are highlighted.

447 citations

Related Papers (5)