scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lysosome-targeting chimaeras for degradation of extracellular proteins.

29 Jul 2020-Nature (Nature Publishing Group)-Vol. 584, Iss: 7820, pp 291-297
TL;DR: The results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics.
Abstract: The majority of therapies that target individual proteins rely on specific activity-modulating interactions with the target protein—for example, enzyme inhibition or ligand blocking. However, several major classes of therapeutically relevant proteins have unknown or inaccessible activity profiles and so cannot be targeted by such strategies. Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the manipulation of intracellular protein degradation machinery and are therefore fundamentally limited to proteins that contain cytosolic domains to which ligands can bind and recruit the requisite cellular components. Extracellular and membrane-associated proteins—the products of 40% of all protein-encoding genes7—are key agents in cancer, ageing-related diseases and autoimmune disorders8, and so a general strategy to selectively degrade these proteins has the potential to improve human health. Here we establish the targeted degradation of extracellular and membrane-associated proteins using conjugates that bind both a cell-surface lysosome-shuttling receptor and the extracellular domain of a target protein. These initial lysosome-targeting chimaeras, which we term LYTACs, consist of a small molecule or antibody fused to chemically synthesized glycopeptide ligands that are agonists of the cation-independent mannose-6-phosphate receptor (CI-M6PR). We use LYTACs to develop a CRISPR interference screen that reveals the biochemical pathway for CI-M6PR-mediated cargo internalization in cell lines, and uncover the exocyst complex as a previously unidentified—but essential—component of this pathway. We demonstrate the scope of this platform through the degradation of therapeutically relevant proteins, including apolipoprotein E4, epidermal growth factor receptor, CD71 and programmed death-ligand 1. Our results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics. Lysosome-targeting chimaeras—in which a small molecule or antibody is connected to a glycopeptide ligand to form a conjugate that can bind a cell-surface lysosome-shuttling receptor and a protein target—are used to achieve the targeted degradation of extracellular and membrane proteins.
Citations
More filters
Journal ArticleDOI
TL;DR: The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open‐access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human.
Abstract: The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.

565 citations

Journal ArticleDOI
TL;DR: Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules as mentioned in this paper .
Abstract: Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology. Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. This article summarizes the first two decades of PROTAC discovery and discusses key areas for the future of this therapeutic modality, including establishing the target classes for which it is most suitable and extending its application beyond oncology.

527 citations

Journal ArticleDOI
TL;DR: In this paper, the molecular basis of targeted protein degradation is discussed and a comprehensive review of the most promising degraders in development as cancer therapies to date is provided, with a focus on opportunities and challenges for future development.
Abstract: The human proteome contains approximately 20,000 proteins, and it is estimated that more than 600 of them are functionally important for various types of cancers, including nearly 400 non-enzyme proteins that are challenging to target by traditional occupancy-driven pharmacology. Recent advances in the development of small-molecule degraders, including molecular glues and heterobifunctional degraders such as proteolysis-targeting chimeras (PROTACs), have made it possible to target many proteins that were previously considered undruggable. In particular, PROTACs form a ternary complex with a hijacked E3 ubiquitin ligase and a target protein, leading to polyubiquitination and degradation of the target protein. The broad applicability of this approach is facilitated by the flexibility of individual E3 ligases to recognize different substrates. The vast majority of the approximately 600 human E3 ligases have not been explored, thus presenting enormous opportunities to develop degraders that target oncoproteins with tissue, tumour and subcellular selectivity. In this Review, we first discuss the molecular basis of targeted protein degradation. We then offer a comprehensive account of the most promising degraders in development as cancer therapies to date. Lastly, we provide an overview of opportunities and challenges in this exciting field. The development of small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) has made it possible to target oncoproteins previously considered undruggable. This Review discusses recent advances in the field, with a focus on opportunities and challenges for future development.

173 citations

Journal ArticleDOI
TL;DR: AbTACs as discussed by the authors are a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules, which can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43.
Abstract: Targeted protein degradation has emerged as a new paradigm to manipulate cellular proteostasis. Proteolysis-targeting chimeras (PROTACs) are bifunctional small molecules that recruit an E3 ligase to a target protein of interest, promoting its ubiquitination and subsequent degradation. Here, we report the development of antibody-based PROTACs (AbTACs), fully recombinant bispecific antibodies that recruit membrane-bound E3 ligases for the degradation of cell-surface proteins. We show that an AbTAC can induce the lysosomal degradation of programmed death-ligand 1 by recruitment of the membrane-bound E3 ligase RNF43. AbTACs represent a new archetype within the PROTAC field to target cell-surface proteins with fully recombinant biological molecules.

141 citations

Journal ArticleDOI
TL;DR: GalNAc-Lysosome-targeting chimeras (LYTACs) as discussed by the authors were developed to degrade extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR).
Abstract: Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome-targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosome-targeting receptor, to degrade extracellular proteins in a cell-type-specific manner. We conjugated binders to a triantenerrary N-acetylgalactosamine (tri-GalNAc) motif that engages ASGPR to drive the downregulation of proteins. Degradation of epidermal growth factor receptor (EGFR) by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC consisting of a 3.4-kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type-restricted protein degradation. Lysosome-targeting chimeras (LYTACs) based on glycan ligands of the asialoglycoprotein receptor facilitate the cell-specific targeting and turnover of proteins by lysosomal enzymes, expanding the scope of LYTAC-mediated targeted protein degradation.

125 citations

References
More filters
Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations

Journal ArticleDOI
TL;DR: The Perseus software platform was developed to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data and it is anticipated that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.
Abstract: A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

5,165 citations

Journal ArticleDOI
TL;DR: A novel peptide search engine using a probabilistic scoring model that can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, and accommodates extremely large databases.
Abstract: A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spect...

4,689 citations

Journal ArticleDOI
TL;DR: A new intensity determination and normalization procedure called MaxLFQ is developed that is fully compatible with any peptide or protein separation prior to LC-MS analysis, which accurately detects the mixing ratio over the entire protein expression range, with greater precision for abundant proteins.

3,732 citations

Journal ArticleDOI
TL;DR: This work clarifies the preferred methodology by addressing four issues based on observed decoy hit frequencies: the major assumptions made with this database search strategy are reasonable, concatenated target-decoy database searches are preferable to separate target and decoydatabase searches, and the theoretical error associated with target-Decoy false positive (FP) rate measurements can be estimated.
Abstract: Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.

3,602 citations

Related Papers (5)