scispace - formally typeset
Journal ArticleDOI

M 2 Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene

Reads0
Chats0
TLDR
A system that is capable of segmenting, detecting and tracking multiple people in a cluttered scene using multiple synchronized surveillance cameras located far from each other and the use of occlusion analysis to combine evidence from different camera pairs is presented.
Abstract
When occlusion is minimal, a single camera is generally sufficient to detect and track objects. However, when the density of objects is high, the resulting occlusion and lack of visibility suggests the use of multiple cameras and collaboration between them so that an object is detected using information available from all the cameras in the scene. In this paper, we present a system that is capable of segmenting, detecting and tracking multiple people in a cluttered scene using multiple synchronized surveillance cameras located far from each other. The system is fully automatic, and takes decisions about object detection and tracking using evidence collected from many pairs of cameras. Innovations that help us tackle the problem include a region-based stereo algorithm capable of finding 3D points inside an object knowing only the projections of the object (as a whole) in two views, a segmentation algorithm using bayesian classification and the use of occlusion analysis to combine evidence from different camera pairs. The system has been tested using different densities of people in the scene. This helps us determine the number of cameras required for a particular density of people. Experiments have also been conducted to verify and quantify the efficacy of the occlusion analysis scheme.

read more

Citations
More filters
Journal ArticleDOI

Object tracking: A survey

TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Book

Computer Vision: Algorithms and Applications

TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Journal ArticleDOI

A survey of advances in vision-based human motion capture and analysis

TL;DR: This survey reviews recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement.
Journal ArticleDOI

A survey on visual surveillance of object motion and behaviors

TL;DR: This paper reviews recent developments and general strategies of the processing framework of visual surveillance in dynamic scenes, and analyzes possible research directions, e.g., occlusion handling, a combination of two and three-dimensional tracking, and fusion of information from multiple sensors, and remote surveillance.
Journal ArticleDOI

Multiple Object Tracking Using K-Shortest Paths Optimization

TL;DR: This paper shows that reformulating that step as a constrained flow optimization results in a convex problem and takes advantage of its particular structure to solve it using the k-shortest paths algorithm, which is very fast.
References
More filters
Journal ArticleDOI

Color indexing

TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Journal ArticleDOI

The active badge location system

TL;DR: A novel system for the location of people in an office environment is described, where members of staff wear badges that transmit signals providing information about their location to a centralized location service, through a network of sensors.
Journal ArticleDOI

Pfinder: real-time tracking of the human body

TL;DR: Pfinder is a real-time system for tracking people and interpreting their behavior that uses a multiclass statistical model of color and shape to obtain a 2D representation of head and hands in a wide range of viewing conditions.
Book ChapterDOI

Non-parametric Model for Background Subtraction

TL;DR: A novel non-parametric background model that can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes is presented.
Related Papers (5)