scispace - formally typeset
Search or ask a question
Book

MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows

TL;DR: It is shown that MACS-VRPTW is competitive with the best known existing methods both in terms of solution quality and computation time and improves some of the best solutions known for a number of problem instances in the literature.
Abstract: MACS-VRPTW, an Ant Colony Optimization based approach useful to solve vehicle routing problems with time windows is presented. MACS-VRPTW is organized with a hierarchy of artificial ant colonies designed to successively optimize a multiple objective function: the first colony minimizes the number of vehicles while the second colony minimizes the traveled distances. Cooperation between colonies is performed by exchanging information through pheromone updating. We show that MACS-VRPTW is competitive with the best known existing methods both in terms of solution quality and computation time. Moreover, MACS-VRPTW improves some of the best solutions known for a number of problem instances in the literature.

Content maybe subject to copyright    Report

Citations
More filters
Book
30 Jun 2002
TL;DR: This paper presents a meta-anatomy of the multi-Criteria Decision Making process, which aims to provide a scaffolding for the future development of multi-criteria decision-making systems.
Abstract: List of Figures. List of Tables. Preface. Foreword. 1. Basic Concepts. 2. Evolutionary Algorithm MOP Approaches. 3. MOEA Test Suites. 4. MOEA Testing and Analysis. 5. MOEA Theory and Issues. 3. MOEA Theoretical Issues. 6. Applications. 7. MOEA Parallelization. 8. Multi-Criteria Decision Making. 9. Special Topics. 10. Epilog. Appendix A: MOEA Classification and Technique Analysis. Appendix B: MOPs in the Literature. Appendix C: Ptrue & PFtrue for Selected Numeric MOPs. Appendix D: Ptrue & PFtrue for Side-Constrained MOPs. Appendix E: MOEA Software Availability. Appendix F: MOEA-Related Information. Index. References.

5,994 citations

Journal ArticleDOI
TL;DR: An overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and the ant colony optimization (ACO) metaheuristic is presented.
Abstract: This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.

2,862 citations

Journal ArticleDOI
TL;DR: Computational results on the Traveling Salesman Problem and the Quadratic Assignment Problem show that MM AS is currently among the best performing algorithms for these problems.

2,739 citations


Cites background from "MACS-VRPTW: a multiple ant colony s..."

  • ...Ant Colony Optimization(ACO)[13,8,14,11]isarecentlydeveloped,populationbasedapproachwhichhasbeensuccessfullyappliedto several -hardcombinatorial optimizationproblems[5,7,12,19,20,29,35,45] (see[10,11]for anoverview)....

    [...]

Book
22 Jun 2009
TL;DR: This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling.
Abstract: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

2,735 citations


Cites background from "MACS-VRPTW: a multiple ant colony s..."

  • ..., different mutation and crossover operators in EAs, different neighborhoods in S-metaheuristics, encodings) [9,23,292]....

    [...]

  • ...Cooperation between colonies may be performed by exchanging information through pheromone updating [292]....

    [...]

Book ChapterDOI
21 Apr 2009
TL;DR: Ant Colony Optimization (ACO) is a stochastic local search method that has been inspired by the pheromone trail laying and following behavior of some ant species as discussed by the authors.
Abstract: Ant Colony Optimization (ACO) is a stochastic local search method that has been inspired by the pheromone trail laying and following behavior of some ant species [1]. Artificial ants in ACO essentially are randomized construction procedures that generate solutions based on (artificial) pheromone trails and heuristic information that are associated to solution components. Since the first ACO algorithm has been proposed in 1991, this algorithmic method has attracted a large number of researchers and in the meantime it has reached a significant level of maturity. In fact, ACO is now a well-established search technique for tackling a wide variety of computationally hard problems.

2,424 citations

References
More filters
Journal ArticleDOI
01 Feb 1996
TL;DR: It is shown how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling, and the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.
Abstract: An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.

11,224 citations

Journal ArticleDOI
TL;DR: The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and it is concluded comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.
Abstract: This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSPs. Ants cooperate using an indirect form of communication mediated by a pheromone they deposit on the edges of the TSP graph while building solutions. We study the ACS by running experiments to understand its operation. The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and we conclude comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.

7,596 citations

Journal ArticleDOI
TL;DR: This paper considers the design and analysis of algorithms for vehicle routing and scheduling problems with time window constraints and finds that several heuristics performed well in different problem environments; in particular an insertion-type heuristic consistently gave very good results.
Abstract: This paper considers the design and analysis of algorithms for vehicle routing and scheduling problems with time window constraints. Given the intrinsic difficulty of this problem class, approximation methods seem to offer the most promise for practical size problems. After describing a variety of heuristics, we conduct an extensive computational study of their performance. The problem set includes routing and scheduling environments that differ in terms of the type of data used to generate the problems, the percentage of customers with time windows, their tightness and positioning, and the scheduling horizon. We found that several heuristics performed well in different problem environments; in particular an insertion-type heuristic consistently gave very good results.

3,211 citations

Journal ArticleDOI
TL;DR: An overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and the ant colony optimization (ACO) metaheuristic is presented.
Abstract: This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies' foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.

2,862 citations

Journal ArticleDOI
TL;DR: An artificial ant colony capable of solving the travelling salesman problem (TSP) is described, an example of the successful use of a natural metaphor to design an optimization algorithm.
Abstract: We describe an artificial ant colony capable of solving the travelling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. Computer simulations demonstrate that the artificial ant colony is capable of generating good solutions to both symmetric and asymmetric instances of the TSP. The method is an example, like simulated annealing, neural networks and evolutionary computation, of the successful use of a natural metaphor to design an optimization algorithm.

1,908 citations