scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Magnesium−Antimony Liquid Metal Battery for Stationary Energy Storage

18 Jan 2012-Journal of the American Chemical Society (American Chemical Society)-Vol. 134, Iss: 4, pp 1895-1897
TL;DR: A high-temperature magnesium-antimony liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte, and a positive electrode of Sb is proposed and characterized and results in a promising technology for stationary energy storage applications.
Abstract: Batteries are an attractive option for grid-scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 °C) magnesium-antimony (Mg||Sb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCl(2)-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use of low-cost materials results in a promising technology for stationary energy storage applications.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anodes materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.
Abstract: Li–air(O2) and Li–S batteries have gained much attention recently and most relevant research has aimed to improve the electrochemical performance of air(O2) or sulfur cathode materials. However, many technical problems associated with the Li metal anode have yet to be overcome. This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anode materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.

766 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors developed a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with Li 2S8 in ether solvent as a catholyte and metallic lithium as an anode.
Abstract: Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li2S2 and Li2S, the catholyte is designed to cycle only in the range between sulfur and Li2S4. Consequently all detrimental effects due to the formation and volume expansion of solid Li2S2/Li2S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg−1 and 190 W h L−1 for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li2S8 catholyte, energy densities of 97 W h kg−1 and 108 W h L−1 can be achieved. As the lithium surface is well passivated by LiNO3 additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g−1. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

351 citations

Journal ArticleDOI
16 Oct 2014-Nature
TL;DR: The results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-Melting- point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage.
Abstract: All-liquid batteries comprising a lithium negative electrode and an antimony–lead positive electrode have a higher current density and a longer cycle life than conventional batteries, can be more easily used to make large-scale storage systems, and so potentially present a low-cost means of grid-level energy storage. The integration of batteries into the electric grid is seen as possible means of regulating energy supply from intermittent sources such as wind or solar, but today's battery technologies are too expensive to do the job. An all-liquid battery, comprising a liquid negative electrode, a molten salt electrolyte, and a liquid positive electrode, is one of the technologies being investigated for this role. Here Kangli Wang and colleagues describe a new variant of the concept — an all-liquid Li||Sb–Pb battery — that, through careful choice and alloying of the component electrode materials, reduces operating temperatures and hence potential cost while retaining desirable performance characteristics. The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply1,2,3,4. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium–antimony–lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb–Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony–lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries5,6. At charge–discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge–discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding puts us on a desirable cost trajectory, this approach may well be more broadly applicable to other battery chemistries.

337 citations

Journal ArticleDOI
07 Aug 2013-Langmuir
TL;DR: By applying the electrochemical driving force sufficiently slowly it was possible to measure the electrodes at equilibrium conditions and verify by spectroscopy, microscopy, and diffractometry that these electrodes undergo fully reversible structural changes upon Mg-ion insertion/deinsertion cycling.
Abstract: Electrochemical, surface, and structural studies related to rechargeable Mg batteries were carried out with monolithic thin-film cathodes comprising layered V2O5 and MoO3. The reversible intercalation reactions of these electrodes with Mg ion in nonaqueous Mg salt solutions were explored using a variety of analytical tools. These included slow-scan rate cyclic voltammetry (SSCV), chrono-potentiometry (galvanostatic cycling), Raman and photoelectron spectroscopies, high-resolution microscopy, and XRD. The V2O5 electrodes exhibited reversible Mg-ion intercalation at capacities around 150-180 mAh g(-1) with 100% efficiency. A capacity of 220 mAh g(-1) at >95% efficiency was obtained with MoO3 electrodes. By applying the electrochemical driving force sufficiently slowly it was possible to measure the electrodes at equilibrium conditions and verify by spectroscopy, microscopy, and diffractometry that these electrodes undergo fully reversible structural changes upon Mg-ion insertion/deinsertion cycling.

333 citations

References
More filters
Book
01 Jan 1980
TL;DR: In this paper, the authors present a comprehensive overview of electrode processes and their application in the field of chemical simulation, including potential sweep and potential sweep methods, coupled homogeneous chemical reactions, double-layer structure and adsorption.
Abstract: Major Symbols. Standard Abbreviations. Introduction and Overview of Electrode Processes. Potentials and Thermodynamics of Cells. Kinetics of Electrode Reactions. Mass Transfer by Migration and Diffusion. Basic Potential Step Methods. Potential Sweep Methods. Polarography and Pulse Voltammetry. Controlled--Current Techniques. Method Involving Forced Convention--Hydrodynamic Methods. Techniques Based on Concepts of Impedance. Bulk Electrolysis Methods. Electrode Reactions with Coupled Homogeneous Chemical Reactions. Double--Layer Structure and Adsorption. Electroactive Layers and Modified Electrodes. Electrochemical Instrumentation. Scanning Probe Techniques. Spectroelectrochemistry and Other Coupled Characterization Methods. Photoelectrochemistry and Electrogenerated Chemiluminescence. Appendix A: Mathematical Methods. Appendix B: Digital Simulations of Electrochemical Problems. Appendix C: Reference Tables. Index.

20,533 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of electrochemical methods and their applications, focusing on the following categories: electrochemical water treatment methods, electrochemical method fundamentals and applications, and student solutions manual.
Abstract: Electroanalytical methods colorado state university. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications. electrochemical methods student solutions manual. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications. electrochemical methods student solutions manual. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications. customer reviews electrochemical methods. electrochemical water treatment methods sciencedirect. electrochemical methods fundamentals and applications. electrochemical methods student solutions manual. electrochemical methods fundamentals and applications. electrochemical methods 2nd edition textbook solutions. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications. electrochemical methods fundamentals and applications

5,804 citations

Book
01 Jan 1975

1,904 citations

Journal ArticleDOI
TL;DR: In this paper, a mathematical model that calculates volume expansion and contraction and concentration and stress profiles during lithium insertion into and extraction from a spherical particle of electrode material has been developed, which predicts that carbonaceous particles will fracture in high-power applications such as hybrid-electric vehicle batteries.
Abstract: A mathematical model that calculates volume expansion and contraction and concentration and stress profiles during lithium insertion into and extraction from a spherical particle of electrode material has been developed. The maximum stress in the particle has been determined as a function of dimensionless current, which includes the charge rate, particle size, and diffusion coefficient. The effects of pressure-driven diffusion and nonideal interactions between the lithium and host material have also been described. The model predicts that carbonaceous particles will fracture in high-power applications such as hybrid-electric vehicle batteries.

578 citations