scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates

TL;DR: In this paper, changes in the open flux content of the ionospheric polar cap, estimated from auroral, radar, and low-Earth orbit particle measurements, are used to determine dayside and nightside reconnection rates during 73 hours of observation spread over nine intervals.
Abstract: [1] Changes in the open flux content of the ionospheric polar cap, estimated from auroral, radar, and low-Earth orbit particle measurements, are used to determine dayside and nightside reconnection rates during 73 hours of observation spread over nine intervals. We identify 25 episodes of nightside reconnection and examine statistically the rates and durations of reconnection, as well as possible triggers for the onset of reconnection, such as changes in solar wind ram pressure or orientation of the interplanetary magnetic field. Approximately half of the events can possibly be identified with a trigger, the other half appearing spontaneous. On average 0.3 GWb of open flux are closed in each event, with average durations and reconnection rates being 70 min and 85 kV. We find no evidence for a low background rate of nightside reconnection between these events and conclude that substorms and other large reconnection bursts provide the major or only source of flux closure on the nightside.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion, and new observations, including radar and low altitude spacecraft, MHD simulations, and theoretical considerations have tremendously ad-vanced our understanding of this system.
Abstract: Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low- altitude spacecraft, MHD simulations, and theoretical considerations have tremendously ad- vanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the iono- sphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new

204 citations

Journal ArticleDOI
TL;DR: In this paper, a dipolarizing flux bundle (DFB) is a small magnetotail flux tube (typically 65% of the BBF flux transport) that is used to transport the flux in the tail of the magneto-graph.
Abstract: A dipolarizing flux bundle (DFB) is a small magnetotail flux tube (typically 65% of BBF flux transport, even though they last only ~30% as long as BBFs. The rate of DFB flux transport increases with proximity to Earth and to the premidnight sector, as well as with geomagnetic activity and distance from the neutral sheet. Under the latter two conditions, the total flux transport by a typical DFB also increases. Dipolarizing flux bundles appear more often during increased geomagnetic activity. Since BBFs have been previously shown to be the major flux transporters in the tail, we conclude that DFBs are the dominant drivers of this transport. The occurrence rate of DFBs as a function of location and geomagnetic activity informs us about processes that shape global convection and energy conversion.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the first self-consistent multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma were presented, showing that magnetic reconnections in the chromosphere could be responsible for jet-like transient phenomena.
Abstract: We present results from the first self-consistent multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. We simulate two-dimensional magnetic reconnection in a Harris current sheet with a numerical model which includes ion-neutral scattering collisions, ionization, recombination, optically thin radiative loss, collisional heating, and thermal conduction. In the resulting tearing mode reconnection the neutral and ion fluids become decoupled upstream from the reconnection site, creating an excess of ions in the reconnection region and therefore an ionization imbalance. Ion recombination in the reconnection region, combined with Alfvenic outflows, quickly removes ions from the reconnection site, leading to a fast reconnection rate independent of Lundquist number. In addition to allowing fast reconnection, we find that these non-equilibria partial ionization effects lead to the onset of the nonlinear secondary tearing instability at lower values of the Lundquist number than has been found in fully ionized plasmas. These simulations provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the contribution of the solar wind-driven Dungey-cycle to flux transport in Jupiter's and Saturn's magnetospheres, the associated voltages being based on estimates of the magnetopause reconnection rates recently derived from observations of the interplanetary medium in the vicinity of corresponding planetary orbits.
Abstract: We consider the contribution of the solar wind-driven Dungey-cycle to flux transport in Jupiter's and Saturn's magnetospheres, the associated voltages being based on estimates of the magnetopause reconnection rates recently derived from observations of the interplanetary medium in the vicinity of the corresponding planetary orbits. At Jupiter, the reconnection voltages are estimated to be ~150 kV during several-day weak-field rarefaction regions, increasing to ~1 MV during few-day strong-field compression regions. The corresponding values at Saturn are ~25 kV for rarefaction regions, increasing to ~150 kV for compressions. These values are compared with the voltages associated with the flows driven by planetary rotation. Estimates of the rotational flux transport in the "middle" and "outer" magnetosphere regions are shown to yield voltages of several MV and several hundred kV at Jupiter and Saturn respectively, thus being of the same order as the estimated peak Dungey-cycle voltages. We conclude that under such circumstances the Dungey-cycle "return" flow will make a significant contribution to the flux transport in the outer magnetospheric regions. The "return" Dungey-cycle flows are then expected to form layers which are a few planetary radii wide inside the dawn and morning magnetopause. In the absence of significant cross-field plasma diffusion, these layers will be characterized by the presence of hot light ions originating from either the planetary ionosphere or the solar wind, while the inner layers associated with the Vasyliunas-cycle and middle magnetosphere transport will be dominated by hot heavy ions originating from internal moon/ring plasma sources. The temperature of these ions is estimated to be of the order of a few keV at Saturn and a few tens of keV at Jupiter, in both layers.

113 citations

Journal ArticleDOI
TL;DR: The 2015 St. Patrick's day storm was the first storm of solar cycle 24 to reach a level of "Severe" on the NOAA geomagnetic storm scale as discussed by the authors.
Abstract: The 2015 St. Patrick’s day storm was the first storm of solar cycle 24 to reach a level of “Severe” on the NOAA geomagnetic storm scale. The Norwegian Mapping Authority is operating a national real-time kinematic (RTK) positioning network and has in recent years developed software and services and deployed instrumentation to monitor space weather disturbances. Here, we report on our observations during this event. Strong GNSS (Global Navigation Satellite System) disturbances, measured by the rate-of-TEC index (ROTI), were observed at all latitudes in Norway on March 17th and early on March 18th. Late on the 18th, strong disturbances were only observed in northern parts of Norway. We study the ionospheric disturbances in relation to the auroral electrojet currents, showing that the most intense disturbances of GNSS signals occur on the poleward side of poleward-moving current regions. This indicates a possible connection to ionospheric polar cap plasma patches and/or particle precipitation caused by magnetic reconnection in the magnetosphere tail. We also study the impact of the disturbances on the network RTK and Precise Point Positioning (PPP) techniques. The vertical position errors increase rapidly with increasing ROTI for both techniques, but PPP is more precise than RTK at all disturbance levels.

105 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it was found that a model with a southward interplanetary magnetic field leads to a natural explanation of the SD currents and speculative aspects of the problem as they appear at this time are discussed.
Abstract: : It was found that a model with a southward interplanetary magnetic field leads to a natural explanation of the SD currents. Speculative aspects of the problem as they appear at this time are discussed. It should be remembered that this problem is amenable to revolutionary progress by observations from rockets or satellites which go out more than a few earth's radii.

3,818 citations

Journal ArticleDOI
TL;DR: In this article, the occurrence at high latitudes of a large number of geophysical phenomena, including geomagnetic agitation and bay disturbances, aurorae, and various irregular distri...
Abstract: This paper is concerned with the occurrence at high latitudes of a large number of geophysical phenomena, including geomagnetic agitation and bay disturbances, aurorae, and various irregular distri...

1,320 citations

Journal ArticleDOI
TL;DR: The Dual Auroral Radar Network (DARN) is a global-scale network of HF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere as mentioned in this paper.
Abstract: The Dual Auroral Radar Network (DARN) is a global-scale network of HF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere. Currently, the network consists of the STARE VHF radar system in northern Scandinavia, a northern-hemisphere, longitudinal chain of HF radars that is funded to extend from Saskatoon, Canada to central Finland, and a southern-hemisphere chain that is funded to include Halley Station, SANAE and Syowa Station in Antarctica. When all of the HF radars have been completed they will operate in pairs with common viewing areas so that the Doppler information contained in the backscattered signals may be combined to yield maps of high-latitude plasma convection and the convection electric field. In this paper, the evolution of DARN and particularly the development of its SuperDARN HF radar element is discussed. The DARN/SupperDARN network is particularly suited to studies of large-scale dynamical processes in the magnetosphere-ionosphere system, such as the evolution of the global configuration of the convection electric field under changing IMF conditions and the development and global extent of large-scale MHD waves in the magnetosphere-ionosphere cavity. A description of the HF radars within SuperDARN is given along with an overview of their existing and intended locations, intended start of operations, Principal Investigators, and sponsoring agencies. Finally, the operation of the DARN experiment within ISTP/GGS, the availability of data, and the form and availability of the Key Parameter files is discussed.

1,051 citations

Book ChapterDOI
TL;DR: The magnetic field experiment on ACE provides continuous measurements of the local magnetic field in the interplanetary medium as discussed by the authors, which are essential in the interpretation of simultaneous ACE observations of energetic and thermal particles distributions.
Abstract: The magnetic field experiment on ACE provides continuous measurements of the local magnetic field in the interplanetary medium. These measurements are essential in the interpretation of simultaneous ACE observations of energetic and thermal particles distributions. The experiment consists of a pair of twin, boom-mounted, triaxial fluxgate sensors which are located 165 inches (= 4.19 m) from the center of the spacecraft on opposing solar panels. The electronics and digital processing unit (DPU) is mounted on the top deck of the spacecraft. The two triaxial sensors provide a balanced, fully redundant vector instrument and permit some enhanced assessment of the spacecraft’s magnetic field. The instrument provides data for Browse and high-level products with between 3 and 6 vector s-1 resolution for continuous coverage of the interplanetary magnetic field. Two high-resolution snapshot buffers each hold 297 s of 24 vector s-1 data while on-board Fast Fourier Transforms extend the continuous data to 12 Hz resolution. Real-time observations with 1-s resolution are provided continuously to the Space Environmental Center (SEC) of the National Oceanographie and Atmospheric Association (NO A A) for near-instantaneous, world-wide dissemination in service to space weather studies. As has been our team’s tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the interplanetary medium in support of the fundamental goals of the ACE mission and cooperative studies with other ACE investigators using the combined ACE dataset as well as other ISTP spacecraft involved in the general program of Sun—Earth Connections.

880 citations

Journal ArticleDOI
TL;DR: In this paper, the interplanetary energy flux is estimated on the basis of the Poynting flux and its variations with the rate of energy dissipation in terms of: (1) the ring-current particle injection, (2) Joule dissipation, and (3) auroral particle injection for 15 major geomagnetic storms.
Abstract: The interplanetary energy flux is estimated on the basis of the Poynting flux and its variations with the rate of energy dissipation in terms of: (1) the ring-current particle injection, (2) Joule dissipation in the ionosphere, and (3) auroral particle injection for 15 major geomagnetic storms. A relationship, in terms of the angle between the interplanetary magnetic field vector and the magnetospheric field vector, is defined by which the growth of geomagnetic storms is closely associated with the Poynting flux. It is found that the energy flux that enters the magnetosphere is dissipated through intramagnetospheric substorm processes. Geomagnetic storm phenomena represent the combined influence of such effects.

744 citations