scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Magnetic study of Co-doped CdSe nanoparticles

10 Apr 2018-Vol. 1942, Iss: 1, pp 120020
TL;DR: In this article, the average particle size of all the samples was found to be ∼ 25'nm and the XRD pattern showed the cubic structure of the sample. But the average size of the samples is not known.
Abstract: Cobalt (2 %, 5 % and 10 %) doped cadmium selenide (CdSe) nanoparticles have been synthesized by soft chemical route. The XRD pattern shows the cubic structure of the sample. Crystallization temperature of the samples is calculated using differential scanning calorimeter. The average particle size of all the samples is found to be ∼ 25 nm. Field dependent (M-H) and temperature dependent (M-T) magnetization explains the presence of ferromagnetic components in the samples at room temperature and low temperature. In order to estimate the antiferromagnetic coupling among the doped TM atoms, an M-T measurement at 500 Oe has been carried out under zero field cooled (ZFC) and field cooled (FC) conditions and Curie-Weiss temperature θ of the samples has been estimated from 1/χ vs T plots.
Citations
More filters
Posted Content
TL;DR: In this paper, the magnetic properties of ZnO:Mn and ZnCo doped nanoparticles were investigated and it was shown that ferromagnetic coupling is restricted to a very thin, nanometric layer, at the grain surface.
Abstract: We report here on the magnetic properties of ZnO:Mn and ZnO:Co doped nanoparticles. We have found that the ferromagnetism of ZnO:Mn can be switched on and off by consecutive low-temperature annealings in O2 and N2 respectively, while the opposite phenomenology was observed for ZnO:Co. These results suggest that different defects (presumably n-type for ZnO:Co and p-type for ZnO:Mn) are required to induce a ferromagnetic coupling in each case. We will argue that ferromagnetism is likely to be restricted to a very thin, nanometric layer, at the grain surface. These findings reveal and give insight into the dramatic relevance of surface effects for the occurrence of ferromagnetism in ZnO doped oxides.

1 citations

References
More filters
Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: In this paper, the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−mnxSe, Hg 1−mnsTe) were reviewed.
Abstract: We review the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−xMnxSe, Hg1−xMnxTe). Crystallographic properties are discussed first, with emphasis on the common structural features which these materials have as a result of tetrahedral bonding. We then describe the band structure of the AII1−xMnxBVI alloys in the absence of an external magnetic field, stressing the close relationship of the sp electron bands in these materials to the band structure of the nonmagnetic AIIBVI ‘‘parent’’ semiconductors. In addition, the characteristics of the narrow (nearly localized) band arising from the half‐filled Mn 3d5 shells are described, along with their profound effect on the optical properties of DMS. We then describe our present understanding of the magnetic properties of the AII1−xMnxBVI alloys. In particular, we discuss the mechanism of the Mn++‐Mn++ exchange, which underlies the magnetism of these materials; we present an analytic formulation for the magnetic susc...

2,895 citations

Journal ArticleDOI
TL;DR: Recent experimental and theoretical developments are reviewed, emphasizing that they not only disentangle many controversies and puzzles accumulated over the past decade but also offer new research prospects.
Abstract: In 2000, a seminal study predicted ferromagnetism above room temperature in diluted magnetic semiconductors and oxides, fuelling tremendous research activity that has lasted for a decade. Tomasz Dietl reviews the progress in understanding these materials over the past ten years, with a view to the future of semiconductor spintronics.

1,208 citations

Journal ArticleDOI
TL;DR: In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.
Abstract: Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperature functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.

930 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics.
Abstract: This review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics. Details of the electronic structure of transition-metal-doped III-V and II-VI semiconductors are described, especially how the electronic structure couples to the magnetic properties of an impurity. In addition, the underlying mechanism of the ferromagnetism in DMSs is investigated from the electronic structure point of view in order to establish a unified picture that explains the chemical trend of the magnetism in DMSs. Recent efforts to fabricate high-TC DMSs require accurate materials design and reliable TC predictions for the DMSs. In this connection, a hybrid method (ab initio calculations of effective exchange interactions coupled to Monte Carlo simulations for the thermal properties) is discussed as a practical method for calculating the Curie temperature of DMSs. The calculated ordering temperatures for various DMS systems are discussed, and the usefulness of the method is demonstrated. Moreover, in order to include all the complexity in the fabrication process of DMSs into advanced materials design, spinodal decomposition in DMSs is simulated and we try to assess the effect of inhomogeneity in them. Finally, recent works on first-principles theory of transport properties of DMSs are reviewed. The discussion is mainly based on electronic structure theory within the local-density approximation to density-functional theory.

873 citations