scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Magnetism and microfluidics

20 Dec 2006-Lab on a Chip (The Royal Society of Chemistry)-Vol. 6, Iss: 1, pp 24-38
TL;DR: The aim of this review is to introduce and discuss the various developments within the field of magnetism and microfluidics.
Abstract: Magnetic forces are now being utilised in an amazing variety of microfluidic applications. Magnetohydrodynamic flow has been applied to the pumping of fluids through microchannels. Magnetic materials such as ferrofluids or magnetically doped PDMS have been used as valves. Magnetic microparticles have been employed for mixing of fluid streams. Magnetic particles have also been used as solid supports for bioreactions in microchannels. Trapping and transport of single cells are being investigated and recently, advances have been made towards the detection of magnetic material on-chip. The aim of this review is to introduce and discuss the various developments within the field of magnetism and microfluidics.
Citations
More filters
01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: The construction and operation of chiral colloidal propellers that can be navigated in water with micrometer-level precision using homogeneous magnetic fields are reported.
Abstract: For biomedical applications, such as targeted drug delivery and microsurgery, it is essential to develop a system of swimmers that can be propelled wirelessly in fluidic environments with good control Here, we report the construction and operation of chiral colloidal propellers that can be navigated in water with micrometer-level precision using homogeneous magnetic fields The propellers are made via nanostructured surfaces and can be produced in large numbers The nanopropellers can carry chemicals, push loads, and act as local probes in rheological measurements

1,122 citations

Journal ArticleDOI
Nicole Pamme1
TL;DR: Researchers now have a diverse toolbox to choose from and it is likely that continuous flow methods will play an important role in future point-of-care or in-the-field analysis devices.
Abstract: Biochemical sample mixtures are commonly separated in batch processes, such as filtration, centrifugation, chromatography or electrophoresis. In recent years, however, many research groups have demonstrated continuous flow separation methods in microfluidic devices. Such separation methods are characterised by continuous injection, real-time monitoring, as well as continuous collection, which makes them ideal for combination with upstream and downstream applications. Importantly, in continuous flow separation the sample components are deflected from the main direction of flow, either by means of a force field (electric, magnetic, acoustic, optical etc.), or by intelligent positioning of obstacles in combination with laminar flow profiles. Sample components susceptible to deflection can be spatially separated. A large variety of methods has been reported, some of these are miniaturised versions of larger scale methods, others are only possible in microfluidic regimes. Researchers now have a diverse toolbox to choose from and it is likely that continuous flow methods will play an important role in future point-of-care or in-the-field analysis devices.

831 citations

Journal ArticleDOI
TL;DR: Keywords: Spin-Valve Sensors ; Cell Tracking Velocimetry ; On-A-Chip ; Polymerase-Chain-Reaction ; Total Analysis Systems ; Iron-Oxide Nanoparticles ; Field-Flow Fractionation ; Cross-Coupling Reactions ; Circulating Tumor-Cells ; Mode Magnetophoretic Microseparator Reference LMIS2-ARTICLE-2010-004
Abstract: Keywords: Spin-Valve Sensors ; Cell Tracking Velocimetry ; On-A-Chip ; Polymerase-Chain-Reaction ; Total Analysis Systems ; Iron-Oxide Nanoparticles ; Field-Flow Fractionation ; Cross-Coupling Reactions ; Circulating Tumor-Cells ; Mode Magnetophoretic Microseparator Reference LMIS2-ARTICLE-2010-004doi:10.1021/cr9001929View record in Web of Science Record created on 2010-01-20, modified on 2016-08-08

624 citations

Journal ArticleDOI
TL;DR: This approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans.
Abstract: The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths. Detecting circulating tumour cells -- a common marker for the development of metastasis -- is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans.

569 citations

References
More filters
Book ChapterDOI
TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Abstract: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other biological entities; (ii) therapeutic drug, gene and radionuclide delivery; (iii) radio frequency methods for the catabolism of tumours via hyperthermia; and (iv) contrast enhancement agents for magnetic resonance imaging applications. Future prospects are also discussed.

2,815 citations

01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the book.http://www.reviewreviews.com/reviews/book-reviews-of-the-book
Abstract: Review

2,157 citations

Journal ArticleDOI
TL;DR: This second part of the review of microfluidic system preparation will cover a number of standard operations as well as some biological applications of micro total analysis systems.
Abstract: After having reviewed some aspects of microfluidic system preparation in the first part (1), in this second part of the review we will cover a number of standard operations (namely: sample preparation, sample injection, sample manipulation, reaction, separation, and detection) as well as some biological applications of micro total analysis systems (namely: cell culture, polymerase chain reaction, DNA separation, DNA sequencing, and clinical diagnostics). As previously, we will include papers issued from different scientific journals as well as useful abstracts from three conference proceedings: MEMS, Transducers, and μTAS. In this second part, we do not include the period covered by the history section (1975-1997) from part 1 but try to cover the relevant examples of the literature published between January 1998 and March 2002. We briefly describe articles that struck us as needing special attention, while more “standard” papers are dutifully reported in groups of interest. An article might be included in more than one section, depending on the ideas developed in it.

1,541 citations