Magnetization-steps in Y2CoMnO6 double perovskite: The role of antisite disorder
Abstract: Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at Tc ≈ 75 K. At 2 K, it displays a strong ferromagnetic hysteresis with a significant coercive field of Hc ≈ 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8 K. In the temperature range 2 K ≤ T ≤ 5 K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P21/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots.
...read more
Citations
93 citations
38 citations
30 citations
27 citations
27 citations
References
13,024 citations
10,574 citations
2,783 citations
2,720 citations
2,108 citations