scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Magneto-Photo-Thermo-Microstretch Semiconductor Elastic Medium Due to Photothermal Transport Process

TL;DR: In this article, a mathematical-physical model of semiconductor medium is investigated in the context of photo-thermoelasticity theory during photothermal transport process, and the main physical quantities are taken during two dimensions (2D) electronic-elastic deformation.
Abstract: Electro-magnetic-thermal-microstretch elastic mathematical-physical model of semiconductor medium is investigated. The governing equations are studied in the context of photo-thermoelasticity theory during photothermal transport process. The semiconductor medium is exposed to an external magnetic field and a beam of laser. The coupled between electromagnetic field, thermal, elastic and plasma waves when the inertia-microstretch properties of elastic semiconductor material is taken into account. The main physical quantities are taken during two dimensions (2D) electronic-elastic deformation. The microinertia of microelement under the impact of external magnetic field is taken into consideration. The harmonic wave solutions in 2D with time variation is used to obtain the main physical fields. To obtain the complete solutions of the physical fields, some mechanical-thermal-elastic and plasma conditions for the semiconductor medium are taken at the boundary. The physical constants of the silicon (Si) material are used to make the numerical simulations and obtained the physical variables with the horizontal distance graphically. Many comparisons are made according to the thermal memories and the magnetic field influence.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , an innovative method for characterizing a layer of micro-elongated semiconductor material under excitation was proposed, where fractional time derivatives of a heat equation with a rotational field are used to probe the model during photo-excitation processes.
Abstract: Outlined here is an innovative method for characterizing a layer of microelongated semiconductor material under excitation. Fractional time derivatives of a heat equation with a rotational field are used to probe the model during photo-excitation processes. Micropolar-thermoelasticity theory, which the model implements, introduces the microelongation scalar function to characterize the processes occurring inside the microelements. When the microelongation parameters are considered following the photo-thermoelasticity theory, the model investigates the interaction scenario between optical-thermo-mechanical waves under the impact of rotation parameters. During electronic and thermoelastic deformation, the key governing equations have been reduced to dimensionless form. Laplace and Fourier's transformations are used to solve this mathematical problem. Isotropic, homogeneous, and linear microelongated semiconductor medium's general solutions to their respective fundamental fields are derived in two dimensions (2D). To get complete solutions, several measurements must be taken at the free surface of the medium. As an example of numerical modeling of the important fields, we will use the silicon (Si) material's physicomechanical characteristics. Several comparisons were made using different values of relaxation time and rotation parameters, and the results were graphically shown.
Journal ArticleDOI
09 Jan 2023-Crystals
TL;DR: In this article , a model that describes an optically heated layer of an excited non-local micro-elongated semiconductor material in a rotating field is examined as the photo-excitation processes occur.
Abstract: The main goal of this research is to provide a novel model that describes an optically heated layer of an excited non-local microelongated semiconductor material. In a rotating field, the model is examined as the photo-excitation processes occur. The model presents the microelongation scalar function, which describes the microelement processes according to the micropolar-thermoelasticity theory. The model analyses the interaction situation between optical-thermomechanical waves under the impact of rotation parameters when the microelongation parameters are taken into consideration according to the photo-thermoelasticity theory. During the electronic and thermoelastic deformation, the fundamental governing equations were obtained in dimensionless form, and they were investigated using the harmonic wave methodology. Two-dimensional general solutions for the fundamental fields of an isotropic, homogeneous, and linear non-local microelongated semiconductor medium are derived (2D). The free surface of the medium is subjected to several conditions to produce complete solutions due to the laser pulse. The physical properties of silicon (Si) material are used to show numerical modeling of the main fields. Some comparisons are made and graphically shown under the impact of various relaxation time and rotational parameters.
References
More filters
Journal ArticleDOI
TL;DR: In this article, a generalized dynamical theory of thermoelasticity is formulated using a form of the heat transport equation which includes the time needed for acceleration of heat flow.
Abstract: In this work a generalized dynamical theory of thermoelasticity is formulated using a form of the heat transport equation which includes the time needed for acceleration of the heat flow. The theory takes into account the coupling effect between temperature and strain rate, but the resulting coupled equations are both hyperbolic. Thus, the paradox of an infinite velocity of propagation, inherent in the existing coupled theory of thermoelasticity, is eliminated. A solution is obtained using the generalized theory which compares favourably with a known solution obtained using the conventional coupled theory.

3,266 citations

Journal ArticleDOI
TL;DR: In this article, a unified treatment of thermoelasticity by application and further developments of the methods of irreversible thermodynamics is presented, along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement.
Abstract: A unified treatment is presented of thermoelasticity by application and further developments of the methods of irreversible thermodynamics. The concept of generalized free energy introduced in a previous publication plays the role of a ``thermoelastic potential'' and is used along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement. The general laws of thermoelasticity are formulated in a variational form along with a minimum entropy production principle. This leads to equations of the Lagrangian type, and the concept of thermal force is introduced by means of a virtual work definition. Heat conduction problems can then be formulated by the methods of matrix algebra and mechanics. This also leads to the very general property that the entropy density obeys a diffusion‐type law. General solutions of the equations of thermoelasticity are also given using the Papkovitch‐Boussinesq potentials. Examples are presented and it is shown how the generalized coordinate method may be used to calculate the thermoelastic internal damping of elastic bodies.

2,287 citations

Journal ArticleDOI
Andrew C. Tam1
TL;DR: In this article, the theory and applications of photo-acoustic (also called optoacoustic) methods belonging to the more general area of photothermal measurement techniques are reviewed, covering excitation of gaseous or condensed samples with modulated continuous light beams or pulsed light beams.
Abstract: This paper reviews the theory and applications of photoacoustic (also called optoacoustic) methods belonging to the more general area of photothermal measurement techniques. The theory covers excitation of gaseous or condensed samples with modulated continuous light beams or pulsed light beams. The applications of photoacoustic methods include spectroscopy, monitoring deexcitation processes, probing physical properties of materials, and generating mechanical motions. Several other related photothermal methods, as well as particle-acoustics and wave-acoustics methods are also described. This review complements an earlier and narrower review [Rev. Mod. Phys. 53, 517 (1981)] that is mainly concerned with sensitive detection by pulsed photoacoustic spectroscopy in condensed matter.

1,183 citations

Journal ArticleDOI
TL;DR: In this paper, buildup and decay transients were observed when polar or nonpolar liquid cells were placed within the resonator of a helium-neon laser operating in the red at 6328 A.
Abstract: Buildup and decay transients were observed when polar or nonpolar liquid cells were placed within the resonator of a helium—neon laser operating in the red at 6328 A. Similar but smaller effects were also observed with two solids. Time constants were the order of a few seconds for all materials, which suggests a thermal phenomenon, but general heating effects were ruled out by the strong localization of the phenomenon. Transverse motion of the cell by about one beam width caused new transients similar to the initial ones.It is believed that the effects are caused by absorption of the red light in the material, producing a local heating in the vicinity of the beam and a lens effect arising from the transverse gradient of refractive index. Absorptions of 10−3 to 10−4 parts per centimeter are sufficient to produce the effects, and are believed to be reasonable values for the materials studied. One of the most important applications may in fact be for the measurement of small absorbancies.The experiments are ...

992 citations

Journal ArticleDOI
TL;DR: In this article, a new technique was presented for obtaining the absorption spectra of small samples and low concentrations of gases, which makes use of currently available sources of wavelength-tunable intense coherent light such as the optical parametric oscillator, dye laser, or tunable diode laser.
Abstract: A new technique is presented for obtaining the absorption spectra of small samples and low concentrations of gases. The technique makes use of currently available sources of wavelength‐tunable intense coherent light such as the optical parametric oscillator, dye laser, or tunable diode laser. The absorbed power is detected by the heating and resultant pressure rise in the absorbing gas. An initial experiment with a 15‐mW He–Ne laser operating at 3.39 μ has shown a sensitivity adequate to measure the absorption of a concentration of 10−8 of methane in nitrogen. It is expected that, with higher‐power sources of tunable ir radiation, it may be possible in the future to detect concentrations of impurities as low as 10−13.

498 citations

Trending Questions (3)
What is the definition microstretch in photothermal semiconductor elastic medium?

The microstretch refers to the inertia properties of a microelement in a semiconductor medium under the influence of an external magnetic field.

How is microstretch in photothermal elastic medium defined?

The paper investigates the microstretch properties of an elastic semiconductor medium during photothermal transport process.

How is microstretch medium in photothermal elastic medium defined?

The paper investigates the electro-magnetic-thermal-microstretch elastic model of a semiconductor medium during photothermal transport process.