scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Magnetocapacitance and Magnetoresistance Near Room Temperature in a Ferromagnetic Semiconductor: La2NiMnO6

About: This article is published in Advanced Materials.The article was published on 2005-09-16. It has received 622 citations till now. The article focuses on the topics: Ferromagnetic material properties & Magnetocapacitance.
Citations
More filters
Journal ArticleDOI
TL;DR: A survey of the literature for ca. one thousand B-site substituted perovskite oxides can be found in this article, together with their electronic and magnetic properties and properties.

815 citations

Journal ArticleDOI
TL;DR: The existence of a magnetodielectric (magnetocapacitance) effect is often used as a test for multiferroic behavior in new material systems.
Abstract: The existence of a magnetodielectric (magnetocapacitance) effect is often used as a test for multiferroic behavior in new material systems. However, strong magnetodielectric effects can also be achieved through a combination of magnetoresistance and the Maxwell-Wagner effect, unrelated to true magnetoelectric coupling. The fact that this resistive magnetocapacitance does not require multiferroic materials may be advantageous for practical applications. Conversely, however, it also implies that magnetocapacitance per se is not sufficient to establish that a material is multiferroic.

804 citations

Journal ArticleDOI
TL;DR: It is demonstrated how interfacial interactions can induce a complex magnetic structure in a non-magnetic material and specifically show that exchange bias can unexpectedly emerge in heterostructures consisting of paramagnetic LaNiO3 (LNO) and ferromagnetic LaMnO 3 (LMO).
Abstract: Interfaces between insulating oxides have revealed exotic electronic and magnetic properties. It is now shown that a complex magnetic structure can emerge in an oxide superlattice, and that specific interfaces can unexpectedly exhibit exchange bias. The observations reveal the induction of antiferromagnetism in a material that is usually paramagnetic.

379 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the possibility of realizing 2D ferromagnetic semiconductors simply by exfoliating layered crystals of CrXTe3 (X = Si, Ge).
Abstract: Two-dimensional (2D) ferromagnetic semiconductors hold a great potential for nano-electronic and spintronic devices. Nevertheless, their experimental realization remains a big challenge. Through first-principles calculations, we here demonstrate the possibility of realizing 2D ferromagnetic semiconductors simply by exfoliating layered crystals of CrXTe3 (X = Si, Ge). The exfoliation of CrXTe3 is feasible due to its small cleavage energy, and CrXTe3 nanosheets can form free-standing membranes. Interestingly, upon exfoliation, the ferromagnetism and semiconducting character are well preserved from bulk to the nanosheet form. Long-range ferromagnetic order with a magnetization of 3 μB per Cr atom is confirmed in 2D CrXTe3 from classical Heisenberg model Monte Carlo simulations. Both bulk and 2D CrXTe3 are indirect-gap semiconductors with their valence and conduction bands fully spin-polarized in the same direction, which is promising for spin-polarized carrier injection and detection. We further demonstrate the tunability and enrichment of the properties of CrXTe3 nanosheets via external operations. Under moderate tensile strain, the 2D ferromagnetism can be largely enhanced. By pure electron doping or adsorbing nucleophilic molecules, CrXTe3 nanosheets become 2D half metals.

327 citations

Journal ArticleDOI
TL;DR: In this article, a brief review of the basic principles and theoretical design of spintronics materials is given, and some attentions to the antiferromagnetic spintronic materials are also given.
Abstract: Spintronics is one of the most promising next generation information technology, which uses the spins of electrons as information carriers and possesses potential advantages of speeding up data processing, high circuit integration density, and low energy consumption. However, spintronics faces a number of challenges, including spin generation and injection, long distance spin transport, and manipulation and detection of spin orientation. In solving these issues, new concepts and spintronics materials were proposed one after another, such as half metals, spin gapless semiconductors, and bipolar magnetic semiconductors. Topological insulators can also be viewed as a special class of spintronics materials, with their surface states used for pure spin generation and transportation. In designing these spintronics materials, first-principles calculations play a very important role. This article attempts to give a brief review of the basic principles and theoretical design of these materials. Meanwhile, we also give some attentions to the antiferromagnetic spintronics, which is mainly based on antiferromagnets and has aroused much interest in recent years.

296 citations


Cites background from "Magnetocapacitance and Magnetoresis..."

  • ...Typical examples of HSCs include La2NiMnO4 [25], BiMnO3 [26], and V(TCNE)x [27]....

    [...]

References
More filters
Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: A description and justification of the EXPGUI program, which implements a graphical user interface and shell for the GSAS single-crystal and Rietveld package using the Tcl/Tk scripting language, is presented.
Abstract: A description and justification of the EXPGUI program is presented. This program implements a graphical user interface and shell for the GSAS single-crystal and Rietveld package. Use of the Tcl/Tk scripting language allows EXPGUI to be platform independent. Also included is a synopsis of how the program is implemented.

7,903 citations


"Magnetocapacitance and Magnetoresis..." refers methods in this paper

  • ...All the data were fit by the Rietveld method using GSAS software.([1-3]) Results of the structural analyses at various temperatures are summarized in Table 1....

    [...]

Journal ArticleDOI
TL;DR: In this article, the theory of double exchange was applied to perovskite-type manganites and detailed qualitative predictions about the magnetic lattice, the crystallographic lattice and the electrical resistivity were made.
Abstract: The theory of semicovalent exchange is reviewed and applied to the perovskite-type manganites $[\mathrm{La}, M(\mathrm{II})]\mathrm{Mn}{\mathrm{O}}_{3}$. With the hypothesis of covalent and semicovalent bonding between the oxygen and manganese ions plus the mechanism of double exchange, detailed qualitative predictions are made about the magnetic lattice, the crystallographic lattice, the electrical resistivity, and the Curie temperature as functions of the fraction of ${\mathrm{Mn}}^{4+}$ present. These predictions are found to be in accord with recent findings from neutron-diffraction and x-ray data as well as with the earlier experiments on this system by Jonker and van Santen.

3,148 citations

Journal ArticleDOI
TL;DR: In this article, the sign of the superexchange interaction is closely connected with the symmetry of the electron orbitals and the cation orbital state when the cations are subject to the crystalline field arising from octahedral or tetrahedrally surrounding anions.

2,477 citations

Journal ArticleDOI
TL;DR: In this article, the structural, magnetic, and electric properties of ferromagnetic perovskite structures were investigated and the changes in the dielectric constant were induced by the magnetic ordering.
Abstract: We have investigated the structural, magnetic, and electric properties of ferromagnetic ${\mathrm{BiMnO}}_{3}$ with a highly distorted perovskite structure. At ${T}_{E}=750--770\mathrm{K},$ a centrosymmetric--to--non-centrosymmetric structural transition takes place, which describes of the ferroelectricity in the system. The changes in the dielectric constant were induced by the magnetic ordering ${(T}_{M}\ensuremath{\approx}100\mathrm{K})$ as well as by the application of magnetic fields near ${T}_{M}.$ These features are attributed to the inherent coupling between the ferroelectric and ferromagnetic orders in the multiferroic system.

898 citations