scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Magnetospheres of black hole systems in force-free plasma

TL;DR: In this article, the dependence of the Poynting flux of a single black hole to the direction of the asymptotic magnetic field has been investigated and it was shown that even for misalignments between the black hole spin and the directions of the magnetic field, a Poysing flux is generated with a luminosity dependent on such misalignment.
Abstract: The interaction of black holes with ambient magnetic fields is important for a variety of highly energetic astrophysical phenomena. We study this interaction within the force-free approximation in which a tenuous plasma is assumed to have zero inertia. Blandford and Znajek used this approach to demonstrate the conversion of some of the black hole's energy into electromagnetic Poynting flux in stationary and axisymmetric single black hole systems. We adopt this approach and extend it to examine asymmetric and, most importantly, dynamical systems by implementing the fully nonlinear field equations of general relativity coupled to Maxwell's equations. For single black holes, we study, in particular, the dependence of the Poynting flux and show that, even for misalignments between the black hole spin and the direction of the asymptotic magnetic field, a Poynting flux is generated with a luminosity dependent on such misalignment. For binary black hole systems, we show both in the head-on and orbiting cases that the moving black holes generate a Poynting flux.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the possibility that some active galactic nuclei, microquasars, and gamma ray bursts may be powered by the electromagnetic braking of a rapidly rotating black hole.
Abstract: Some active galactic nuclei, microquasars, and gamma ray bursts may be powered by the electromagnetic braking of a rapidly rotating black hole. We investigate this possibility via axisymmetric numerical simulations of a black hole surrounded by a magnetized plasma. The plasma is described by the equations of general relativistic magnetohydrodynamics, and the effects of radiation are neglected. The evolution is followed for $2000 G M/c^3$, and the computational domain extends from inside the event horizon to typically $40 G M/c^2$. We compare our results to two analytic steady state models, including the force-free magnetosphere of Blandford & Znajek. Along the way we present a self-contained rederivation of the Blandford-Znajek model in Kerr-Schild (horizon penetrating) coordinates. We find that (1) low density polar regions of the numerical models agree well with the Blandford-Znajek model; (2) many of our models have an outward Poynting flux on the horizon in the Kerr-Schild frame; (3) none of our models have a net outward energy flux on the horizon; and (4) one of our models, in which the initial disk has net magnetic flux, shows a net outward angular momentum flux on the horizon. We conclude with a discussion of the limitations of our model, astrophysical implications, and problems to be addressed by future numerical experiments.

380 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively.
Abstract: Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20more » (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the development of self-consistent radiative compressible relativistic reconnection models.« less

236 citations

Journal ArticleDOI
04 Jan 2013-Science
TL;DR: The authors' simulations reveal a “magneto-spin alignment” mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away, which has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images.
Abstract: Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH’s spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a “magneto-spin alignment” mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

180 citations

Journal ArticleDOI
TL;DR: In this article, the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation is described by using high-order post-Newtonian approximations.
Abstract: We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but—as the orbital evolution accelerates—the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have simulated the MHD evolution of a circumbinary disk surrounding an equal-mass non-spinning binary and showed that the structure of the disk is predicted well by extrapolation from Newtonian results.
Abstract: As 2 black holes bound to each other in a close binary approach merger their inspiral time becomes shorter than the characteristic inflow time of surrounding orbiting matter. Using an innovative technique in which we represent the changing spacetime in the region occupied by the orbiting matter with a 2.5PN approximation and the binary orbital evolution with 3.5PN, we have simulated the MHD evolution of a circumbinary disk surrounding an equal-mass non-spinning binary. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results. The binary opens a low-density gap whose radius is roughly two binary separations, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; nonetheless, the accretion rate is diminished relative to its value at larger radius by only about a factor of 2. During inspiral, the inner edge of the disk at first moves inward in coordination with the shrinking binary, but as the orbital evolution accelerates, the rate at which the inner edge moves toward smaller radii falls behind the rate of binary compression. In this stage, the rate of angular momentum transfer from the binary to the disk slows substantially, but the net accretion rate decreases by only 10-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes in galactic nuclei could be very luminous at this stage of their evolution. If the luminosity were optically thin, it would be modulated at a frequency that is a beat between the orbital frequency of the disk's surface density maximum and the binary orbital frequency. However, a disk with sufficient surface density to be luminous should also be optically thick; as a result, the periodic modulation may be suppressed.

150 citations


Cites background from "Magnetospheres of black hole system..."

  • ...…(2005); Tchekhovskoy et al. (2007); Noble et al. (2009)), while only the equations of electrodynamics (Palenzuela et al. 2009), force-free MHD (Palenzuela et al. 2010b,a) and nonmagnetized hydrodynamics (e.g., Bode et al. (2010); Farris et al. (2010, 2011); Bode et al. (2012)) have been…...

    [...]

References
More filters
Journal ArticleDOI
25 Sep 1980-Nature
TL;DR: In this article, the authors explore the possibility that some active galactic nuclei may contain two massive black holes in orbit about each other, which suggests a new interpretation for the observed bending and apparent precession of radio jets emerging from these objects.
Abstract: Most theoretical discussions of active galactic nuclei (including quasars) attribute their energy production either to an accreting black hole or to a precursor stage—for instance a dense star cluster or a supermassive star—whose inevitable end point is a massive black hole1. We explore here the possibility that some active nuclei may contain two massive black holes in orbit about each other. This hypothesis suggests a new interpretation for the observed bending2 and apparent precession3 of radio jets emerging from these objects and may indeed be verified through detection of the direct consequences of orbital motion.

1,704 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that most long-duration soft-spectrum gamma-ray bursts are accompanied by massive stellar explosions (GRB-SNe) and that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow.
Abstract: Observations show that at least some gamma-ray bursts (GRBs) happen simultaneously with core-collapse supernovae (SNe), thus linking by a common thread nature's two grandest explosions. We review here the growing evidence for and theoretical implications of this association, and conclude that most long-duration soft-spectrum GRBs are accompanied by massive stellar explosions (GRB-SNe). The kinetic energy and luminosity of well-studied GRB-SNe appear to be greater than those of ordinary SNe, but evidence exists, even in a limited sample, for considerable diversity. The existing sample also suggests that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow. Neither all SNe, nor even all SNe of Type Ibc produce GRBs. The degree of differential rotation in the collapsing iron core of massive stars when they die may be what makes the difference.

1,389 citations

Journal ArticleDOI
TL;DR: In this article, a finite-difference time-domain (FDTD) approach was proposed to handle spontaneous formation of current sheets in the magnetosphere of a star. But this method is not suitable for the case of a single star.
Abstract: Magnetospheres of many astrophysical objects can be accurately described by the low-inertia (or ''force-free'') limit of MHD. We present a new numerical method for solution of equations of force-free relativistic MHD based on the finite-difference time-domain (FDTD) approach with a prescription for handling spontaneous formation of current sheets. We use this method to study the time-dependent evolution of pulsar magnetospheres in both aligned and oblique magnetic geometries. For the aligned rotator we confirm the general properties of the time-independent solution of Contopoulos et al. (1999). For the oblique rotator we present the 3D structure of the magnetosphere and compute, for the first time, the spindown power of pulsars as a function of inclination of the magnetic axis. We find the pulsar spindown luminosity to be L {approx} ({mu}{sup 2}{Omega}{sub *}{sup 4}/c{sup 3})(1 + sin{sup 2}{alpha}) for a star with the dipole moment {mu}, rotation frequency {Omega}{sub *}, and magnetic inclination angle {alpha}. We also discuss the effects of current sheet resistivity and reconnection on the structure and evolution of the magnetosphere.

784 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the solution for the electromagnetic field occurring when a stationary, axisymmetric black hole is placed in an originally uniform magnetic field aligned along the symmetry axis of the black hole.
Abstract: Using the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a Maxwell test field, we derive the solution for the electromagnetic field occurring when a stationary, axisymmetric black hole is placed in an originally uniform magnetic field aligned along the symmetry axis of the black hole. It is shown that a black hole in a magnetic field will selectively accrete charges until its charge becomes $Q=2{\mathrm{Bb}}_{0}J$, where ${B}_{0}$ is the strength of the magnetic field and $J$ is the angular momentum of the black hole. As a by-product of the analysis given here, we prove that the gyromagnetic ratio of a slightly charged, stationary, axisymmetric black hole (not assumed to be Kerr) must have the value $g=2$.

600 citations