scispace - formally typeset
Open AccessJournal ArticleDOI

Making graphene visible

Reads0
Chats0
TLDR
In this article, the authors study the visibility of graphene and show that it depends strongly on both thickness of SiO2 and light wavelength, and they find that ≈100nm is the most suitable wavelength for its visual detection.
Abstract
Microfabrication of graphene devices used in many experimental studies currently relies on the fact that graphene crystallites can be visualized using optical microscopy if prepared on top of Si wafers with a certain thickness of SiO2. The authors study graphene’s visibility and show that it depends strongly on both thickness of SiO2 and light wavelength. They have found that by using monochromatic illumination, graphene can be isolated for any SiO2 thickness, albeit 300nm (the current standard) and, especially, ≈100nm are most suitable for its visual detection. By using a Fresnel-law-based model, they quantitatively describe the experimental data.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Ultrahigh electron mobility in suspended graphene

TL;DR: In this paper, a single layer graphene was suspended ∼150nm above a Si/SiO2 gate electrode and electrical contacts to the graphene was achieved by a combination of electron beam lithography and etching.
Journal ArticleDOI

Graphene photonics and optoelectronics

TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Related Papers (5)