scispace - formally typeset
Journal ArticleDOI

Making Nonmagnetic Semiconductors Ferromagnetic

Hideo Ohno
- 14 Aug 1998 - 
- Vol. 281, Iss: 5379, pp 951-956
Reads0
Chats0
TLDR
The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.
Abstract
REVIEW Semiconductor devices generally take advantage of the charge of electrons, whereas magnetic materials are used for recording information involving electron spin. To make use of both charge and spin of electrons in semiconductors, a high concentration of magnetic elements can be introduced in nonmagnetic III-V semiconductors currently in use for devices. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium molecular beam epitaxial growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 kelvin. The origin of the ferromagnetic interaction is discussed. Multilayer heterostructures including resonant tunneling diodes (RTDs) have also successfully been fabricated. The magnetic coupling between two ferromagnetic (Ga,Mn)As films separated by a nonmagnetic layer indicated the critical role of the holes in the magnetic coupling. The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.

read more

Citations
More filters
Journal ArticleDOI

A comprehensive review of zno materials and devices

TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Journal ArticleDOI

Spintronics: Fundamentals and applications

TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Journal ArticleDOI

Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors

TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Journal ArticleDOI

Colossal Magnetoresistant Materials: The Key Role of Phase Separation

TL;DR: In this paper, a large variety of experiments reviewed in detail here contain results compatible with the theoretical predictions, including phase diagrams of manganite models, the stabilization of the charge/orbital/spin ordered half-doped correlated electronics (CE)-states, the importance of the naively small Heisenberg coupling among localized spins, the setup of accurate mean-field approximations, and the existence of a new temperature scale T∗ where clusters start forming above the Curie temperature, the presence of stripes in the system, and many others.
Journal ArticleDOI

Spins in few-electron quantum dots

TL;DR: In this article, the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint, are described, and various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements.
References
More filters
Journal ArticleDOI

(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs

TL;DR: In this article, a new GaAs-based diluted magnetic semiconductor, (Ga,Mn)As, was prepared by molecular beam epitaxy and the lattice constant was determined by x-ray diffraction and shown to increase with the increase of Mn composition, x.
Journal ArticleDOI

A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model

TL;DR: In this article, the T3/2 law for the temperature dependence of the magnetization of ferromagnetism is shown to be applicable up to very high temperatures, and this result is in good agreement with the results of experiments on metallic ferromagnetic magnetization.
Journal ArticleDOI

Kondo effect in a single-electron transistor

TL;DR: In this paper, the binding energy of the spin singlet has been observed in a single-electron transistor (SET) with only two electrodes and without control over the structure.
Journal ArticleDOI

Kondo Physics in a Single Electron Transistor

TL;DR: Meir et al. as mentioned in this paper reported measurements on a new generation of SETs that display all the aspects of the Kondo phenomenon: the spin singlet forms and causes an enhancement of the zero-bias conductance when the number of electrons on the artificial atom is odd but not when it is even.
Journal ArticleDOI

Shell Filling and Spin Effects in a Few Electron Quantum Dot.

TL;DR: Coulomb oscillations in vertical quantum dots containing a tunable number of electrons starting from zero are measured, as predicted by Hund’s rule, to favor the filling of parallel spins.
Related Papers (5)