scispace - formally typeset
Search or ask a question
Book

Many-Particle Physics

01 Jan 1981-
TL;DR: In this article, the authors present a model for the second quantization of a particle and show that it can be used to construct a pair distribution function with respect to a pair of spinless fermions.
Abstract: 1. Introductory Material.- 1.1. Harmonic Oscillators and Phonons.- 1.2. Second Quantization for Particles.- 1.3. Electron - Phonon Interactions.- A. Interaction Hamiltonian.- B. Localized Electron.- C. Deformation Potential.- D. Piezoelectric Interaction.- E. Polar Coupling.- 1.4. Spin Hamiltonians.- A. Homogeneous Spin Systems.- B. Impurity Spin Models.- 1.5. Photons.- A. Gauges.- B. Lagrangian.- C. Hamiltonian.- 1.6. Pair Distribution Function.- Problems.- 2. Green's Functions at Zero Temperature.- 2.1. Interaction Representation.- A. Schrodinger.- B. Heisenberg.- C. Interaction.- 2.2. S Matrix.- 2.3. Green's Functions.- 2.4. Wick's Theorem.- 2.5. Feynman Diagrams.- 2.6. Vacuum Polarization Graphs.- 2.7. Dyson's Equation.- 2.8. Rules for Constructing Diagrams.- 2.9. Time-Loop S Matrix.- A. Six Green's Functions.- B. Dyson's Equation.- 2.10. Photon Green's Functions.- Problems.- 3. Green's Functions at Finite Temperatures.- 3.1. Introduction.- 3.2. Matsubara Green's Functions.- 3.3. Retarded and Advanced Green's Functions.- 3.4. Dyson's Equation.- 3.5. Frequency Summations.- 3.6. Linked Cluster Expansions.- A. Thermodynamic Potential.- B. Green's Functions.- 3.7. Real Time Green's Functions.- Wigner Distribution Function.- 3.8. Kubo Formula for Electrical Conductivity.- A. Transverse Fields, Zero Temperature.- B. Finite Temperatures.- C. Zero Frequency.- D. Photon Self-Energy.- 3.9. Other Kubo Formulas.- A. Pauli Paramagnetic Susceptibility.- B. Thermal Currents and Onsager Relations.- C. Correlation Functions.- Problems.- 4. Exactly Solvable Models.- 4.1. Potential Scattering.- A. Reaction Matrix.- B. T Matrix.- C. Friedel's Theorem.- D. Phase Shifts.- E. Impurity Scattering.- F. Ground State Energy.- 4.2. Localized State in the Continuum.- 4.3. Independent Boson Models.- A. Solution by Canonical Transformation.- B. Feynman Disentangling of Operators.- C. Einstein Model.- D. Optical Absorption and Emission.- E. Sudden Switching.- F. Linked Cluster Expansion.- 4.4. Tomonaga Model.- A. Tomonaga Model.- B. Spin Waves.- C. Luttinger Model.- D. Single-Particle Properties.- E. Interacting System of Spinless Fermions.- F. Electron Exchange.- 4.5. Polaritons.- A. Semiclassical Discussion.- B. Phonon-Photon Coupling.- C. Exciton-Photon Coupling.- Problems.- 5. Electron Gas.- 5.1. Exchange and Correlation.- A. Kinetic Energy.- B. Direct Coulomb.- C. Exchange.- D. Seitz' Theorem.- E. ?(2a).- F. ?(2b).- G. ?(2c).- H. High-Density Limit.- I. Pair Distribution Function.- 5.2. Wigner Lattice and Metallic Hydrogen.- Metallic Hydrogen.- 5.3. Cohesive Energy of Metals.- 5.4. Linear Screening.- 5.5. Model Dielectric Functions.- A. Thomas-Fermi.- B. Lindhard, or RPA.- C. Hubbard.- D. Singwi-Sjolander.- 5.6. Properties of the Electron Gas.- A. Pair Distribution Function.- B. Screening Charge.- C. Correlation Energies.- D. Compressibility.- 5.7. Sum Rules.- 5.8. One-Electron Properties.- A. Renormalization Constant ZF.- B. Effective Mass.- C. Pauli Paramagnetic Susceptibility.- D. Mean Free Path.- Problems.- 6. Electron-Phonon Interaction.- 6.1 Frohlich Hamiltonian.- A. Brillouin-Wigner Perturbation Theory.- B. Rayleigh-Schrodinger Perturbation Theory.- C. Strong Coupling Theory.- D. Linked Cluster Theory.- 6.2 Small Polaron Theory.- A. Large Polarons.- B. Small Polarons.- C. Diagonal Transitions.- D. Nondiagonal Transitions.- E. Dispersive Phonons.- F. Einstein Model.- G. Kubo Formula.- 6.3 Heavily Doped Semiconductors.- A. Screened Interaction.- B. Experimental Verifications.- C. Electron Self-Energies.- 6.4 Metals.- A. Phonons in Metals.- B. Electron Self-Energies.- Problems.- 7. dc Conductivities.- 7.1. Electron Scattering by Impurities.- A. Boltzmann Equation.- B. Kubo Formula: Approximate Solution.- C. Kubo Formula: Rigorous Solution.- D. Ward Identities.- 7.2. Mobility of Frohlich Polarons.- A. Single-Particle Properties.- B. ??1 Term in the Mobility.- 7.3. Electron-Phonon Interactions in Metals.- A. Force-Force Correlation Function.- B. Kubo Formula.- C. Mass Enhancement.- D. Thermoelectric Power.- 7.4. Quantum Boltzmann Equation.- A. Derivation of the Quantum Boltzmann Equation.- B. Gradient Expansion.- C. Electron Scattering by Impurities.- D. T2 Contribution to the Electrical Resistivity.- Problems.- 8. Optical Properties of Solids.- 8.1. Nearly Free-Electron System.- A. General Properties.- B. Force-Force Correlation Functions.- C. Frohlich Polarons.- D. Interband Transitions.- E. Phonons.- 8.2. Wannier Excitons.- A. The Model.- B. Solution by Green's Functions.- C. Core-Level Spectra.- 8.3. X-Ray Spectra in Metals.- A. Physical Model.- B. Edge Singularities.- C. Orthogonality Catastrophe.- D. MND Theory.- E. XPS Spectra.- Problems.- 9. Superconductivity.- 9.1. Cooper Instability.- 9.2. BCS Theory.- 9.3. Electron Tunneling.- A. Tunneling Hamiltonian.- B. Normal Metals.- C. Normal-Superconductor.- D. Two Superconductors.- E. Josephson Tunneling.- 9.4. Infrared Absorption.- 9.5. Acoustic Attenuation.- 9.6. Excitons in Superconductors.- 9.7. Strong Coupling Theory.- Problems.- 10. Liquid Helium.- 10.1. Pairing Theory.- A. Hartree and Exchange.- B. Bogoliubov Theory of 4He.- 10.2. 4He: Ground State Properties.- A. Off-Diagonal Long-Range Order.- B. Correlated Basis Functions.- C. Experiments on nk.- 10.3. 4He: Excitation Spectrum.- A. Bijl-Feynman Theory.- B. Improved Excitation Spectra.- C. Superfluidity.- 10.4. 3He: Normal Liquid.- A. Fermi Liquid Theory.- B. Experiments and Microscopic Theories.- C. Interaction between Quasiparticles: Excitations.- D. Quasiparticle Transport.- 10.5. Superfluid 3He.- A. Triplet Pairing.- B. Equal Spin Pairing.- Problems.- 11. Spin Fluctuations.- 11.1. Kondo Model.- A. High-Temperature Scattering.- B. Low-Temperature State.- C. Kondo Temperature.- 11.2. Anderson Model.- A. Collective States.- B. Green's Functions.- C. Spectroscopies.- Problems.- References.- Author Index.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

3,077 citations

Journal ArticleDOI
TL;DR: A review of the literature on thermal transport in nanoscale devices can be found in this article, where the authors highlight the recent developments in experiment, theory and computation that have occurred in the past ten years and summarizes the present status of the field.
Abstract: Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid–solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology.

2,933 citations

Journal ArticleDOI
TL;DR: In this paper, a large variety of experiments reviewed in detail here contain results compatible with the theoretical predictions, including phase diagrams of manganite models, the stabilization of the charge/orbital/spin ordered half-doped correlated electronics (CE)-states, the importance of the naively small Heisenberg coupling among localized spins, the setup of accurate mean-field approximations, and the existence of a new temperature scale T∗ where clusters start forming above the Curie temperature, the presence of stripes in the system, and many others.

2,927 citations


Cites background from "Many-Particle Physics"

  • ...(60) More complicated operators can be written in terms of Green functions using Wick's theorem (Mahan, 1981, p. 95) which states that a a a a " a a a a ! a a a a ....

    [...]

  • ...1 ImG (k, ) , (68) where the retarded Green function G (k, ) is given by (see Mahan, 1981, p. 135) G (k, )" dt e G (k, t) (69) and G (k, t)"!i (t) [a (t)a (0)#a (0)a (t)] "!i (t) (G #G ) ....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations