scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.STEM.2020.11.008

Mapping Development of the Human Intestinal Niche at Single-Cell Resolution.

04 Mar 2021-Cell Stem Cell (Elsevier)-Vol. 28, Iss: 3
Abstract: Summary The human intestinal stem cell niche supports self-renewal and epithelial function, but little is known about its development. We used single-cell mRNA sequencing with in situ validation approaches to interrogate human intestinal development from 7–21 weeks post conception, assigning molecular identities and spatial locations to cells and factors that comprise the niche. Smooth muscle cells of the muscularis mucosa, in close proximity to proliferative crypts, are a source of WNT and RSPONDIN ligands, whereas EGF is expressed far from crypts in the villus epithelium. Instead, an PDGFRAHI/F3HI/DLL1HI mesenchymal population lines the crypt-villus axis and is the source of the epidermal growth factor (EGF) family member NEUREGULIN1 (NRG1). In developing intestine enteroid cultures, NRG1, but not EGF, permitted increased cellular diversity via differentiation of secretory lineages. This work highlights the complexities of intestinal EGF/ERBB signaling and delineates key niche cells and signals of the developing intestine.

... read more

Topics: MRNA Sequencing (54%), Population (51%), Stem cell (50%) ... read more

28 results found

Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.12.016
04 Feb 2021-Cell
Abstract: Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.

... read more

Topics: Population (52%), Morphogen (51%)

39 Citations

Open accessJournal ArticleDOI: 10.1016/J.DEVCEL.2020.11.010
Rasa Elmentaite1, Alexander Ross2, Kenny Roberts1, Kylie R. James1  +12 moreInstitutions (3)
21 Dec 2020-Developmental Cell
Abstract: Summary Human gut development requires the orchestrated interaction of differentiating cell types. Here, we generate an in-depth single-cell map of the developing human intestine at 6–10 weeks post-conception. Our analysis reveals the transcriptional profile of cycling epithelial precursor cells; distinct from LGR5-expressing cells. We propose that these cells may contribute to differentiated cell subsets via the generation of LGR5-expressing stem cells and receive signals from surrounding mesenchymal cells. Furthermore, we draw parallels between the transcriptomes of ex vivo tissues and in vitro fetal organoids, revealing the maturation of organoid cultures in a dish. Lastly, we compare scRNA-seq profiles from pediatric Crohn’s disease epithelium alongside matched healthy controls to reveal disease-associated changes in the epithelial composition. Contrasting these with the fetal profiles reveals the re-activation of fetal transcription factors in Crohn’s disease. Our study provides a resource available at , and underscores the importance of unraveling fetal development in understanding disease.

... read more

Topics: Cellular differentiation (53%), Stem cell (53%), Mesenchymal stem cell (53%) ... read more

36 Citations

Open accessJournal ArticleDOI: 10.1038/S41586-021-03852-1
09 Sep 2021-Nature
Abstract: The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung’s disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease. Cells from embryonic, fetal, paediatric and adult human intestinal tissue are analysed at different locations along the intestinal tract to construct a single-cell atlas of the developing and adult human intestinal tract, encompassing all cell lineages.

... read more

Topics: Immune system (50%)

20 Citations

Open accessJournal ArticleDOI: 10.1038/S41586-021-03620-1
Muzlifah Haniffa1, Muzlifah Haniffa2, Deanne Taylor3, Deanne Taylor4  +36 moreInstitutions (25)
13 May 2021-Nature
Abstract: The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development. This Perspective outlines the Human Developmental Cell Atlas initiative, which uses state-of-the-art technologies to map and model human development across gestation, and discusses the early milestones that have been achieved.

... read more

7 Citations

Open accessJournal ArticleDOI: 10.1016/J.CELL.2021.04.028
Qianhui Yu, Umut Kilik1, Emily M. Holloway2, Yu-Hwai Tsai2  +13 moreInstitutions (4)
10 Jun 2021-Cell
Abstract: Summary Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.

... read more

Topics: Induced pluripotent stem cell (52%), Mesenchyme (52%), Stem cell (50%)

6 Citations


64 results found

Journal ArticleDOI: 10.1038/NATURE07935
14 May 2009-Nature
Abstract: The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.

... read more

Topics: Intestinal stem cell homeostasis (63%), Stem cell (57%), Tuft cell (54%) ... read more

4,115 Citations

Journal ArticleDOI: 10.1053/J.GASTRO.2011.07.050
Toshiro Sato1, Daniel E. Stange1, Marc Ferrante1, Marc Ferrante2  +8 moreInstitutions (2)
01 Nov 2011-Gastroenterology
Abstract: Background & Aims We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Methods Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Results Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. Conclusions We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo.

... read more

Topics: Human gastrointestinal tract (54%), Adult stem cell (52%), Stem cell (52%) ... read more

2,067 Citations

Open accessJournal ArticleDOI: 10.21105/JOSS.00861
02 Sep 2018-
Abstract: Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction. UMAP has a rigorous mathematical foundation, but is simple to use, with a scikit-learn compatible API. UMAP is among the fastest manifold learning implementations available – significantly faster than most t-SNE implementations.

... read more

1,972 Citations

Open accessJournal ArticleDOI: 10.1016/S0092-8674(02)01014-0
18 Oct 2002-Cell
Abstract: The transactivation of TCF target genes induced by Wnt pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of β-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active in the proliferative compartment of colon crypts. Coincidently, an intestinal differentiation program is induced. The TCF-4 target gene c-MYC plays a central role in this switch by direct repression of the p21CIP1/WAF1 promoter. Following disruption of β-catenin/TCF-4 activity, the decreased expression of c-MYC releases p21CIP1/WAF1 transcription, which in turn mediates G1 arrest and differentiation. Thus, the β-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.

... read more

Topics: Cellular differentiation (57%), Wnt signaling pathway (55%), TCF/LEF family (54%) ... read more

1,901 Citations

Open accessJournal ArticleDOI: 10.1038/NATURE09637
20 Jan 2011-Nature
Abstract: Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such as lysozyme and cryptdins/defensins. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells. Here we find a close physical association of Lgr5 stem cells with Paneth cells in mice, both in vivo and in vitro. CD24(+) Paneth cells express EGF, TGF-α, Wnt3 and the Notch ligand Dll4, all essential signals for stem-cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24(+) cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.

... read more

Topics: Paneth cell (76%), Intestinal stem cell homeostasis (65%), Adult stem cell (64%) ... read more

1,860 Citations

No. of citations received by the Paper in previous years