scispace - formally typeset
SciSpace - Your AI assistant to discover and understand research papers | Product Hunt

Journal ArticleDOI

Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.

25 Mar 2009-Annual Review of Marine Science (Annual Reviews)-Vol. 1, Iss: 1, pp 193-212

TL;DR: How chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes is reviewed.

AbstractChemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequ...

Topics: Marine ecosystem (55%), Marine biology (53%), Chemical ecology (52%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Abstract: Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

2,636 citations


Journal ArticleDOI
TL;DR: Evidence from direct and indirect approaches using geochemical and genetic techniques suggests that populations range from fully open to fully closed and a full understanding of population connectivity has important applications for management and conservation.
Abstract: Connectivity, or the exchange of individuals among marine populations, is a central topic in marine ecology. For most benthic marine species with complex life cycles, this exchange occurs primarily during the pelagic larval stage. The small size of larvae coupled with the vast and complex fluid environment they occupy hamper our ability to quantify dispersal and connectivity. Evidence from direct and indirect approaches using geochemical and genetic techniques suggests that populations range from fully open to fully closed. Understanding the biophysical processes that contribute to observed dispersal patterns requires integrated interdisciplinary approaches that incorporate high-resolution biophysical modeling and empirical data. Further, differential postsettlement survival of larvae may add complexity to measurements of connectivity. The degree to which populations self recruit or receive subsidy from other populations has consequences for a number of fundamental ecological processes that affect population regulation and persistence. Finally, a full understanding of population connectivity has important applications for management and conservation.

1,447 citations


Journal ArticleDOI
TL;DR: It is concluded that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Abstract: Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

641 citations


Journal ArticleDOI
TL;DR: It is shown how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional air-sea gas fluxes based on better fundamental physical, chemical, and biological foundations.
Abstract: The past decade has seen a substantial amount of research on air-sea gas exchange and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the flux of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of air-sea gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the exchange of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional air-sea gas fluxes based on better fundamental physical, chemical, and biological foundations.

551 citations


Journal ArticleDOI
TL;DR: The results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in the authors' understanding.
Abstract: Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding.

499 citations


References
More filters

Journal Article

818 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...…to chemical cues from specific hosts, or corals that settle in response to chemical traits of specific crustose coralline algae, or of soft-substrate animals that recruit to or avoid sands treated with specific chemical cues or extracts (e.g., Pawlik 1992, Krug & Manzi 1999, Hadfield & Paul 2001)....

    [...]

  • ...In aquatic systems, chemical cues determine feeding, habitat, and mating choices (e.g., Hay & Fenical 1988, 1996; Pawlik 1992; Breithaupt & Thiel 2008)....

    [...]

  • ...…stimulating feeding once prey have been contacted; compounds responsible for attraction from a distance have rarely been investigated for adult specialist consumers [compounds that cue larval settlement have been investigated; see Pawlik (1992), Krug & Manzi (1999), and Hadfield & Paul (2001)]....

    [...]


Journal ArticleDOI
TL;DR: Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly and these types of seaweeds may be considered herbivore tolerant.
Abstract: Herbivory has a profound effect on seaweeds in both temperate and tropical communities (11, 17, 21, 33, 43, 47, 80, 124). This is especially true on coral reefs where 60-97% (11, 42) of the total seaweed production may be removed by herbivores. To persist in marine communities, seaweeds must escape, deter, or tolerate herbivory. The ecological and evolutionary importance of spatial and temporal escapes has been extensively studied for seaweeds and adequately reviewed in the recent literature (33, 45, 47, 71, 80). The ability of seaweeds to tolerate herbivory has received limited attention. On coral reefs, rapidly growing filamentous algae are heavily grazed, but the algae quickly replace these losses and appear to be dependent upon herbivores to prevent their habitat from being overgrown by larger but less herbivoretolerant species (11, 71). Additionally, several seaweeds have spores or vegetative portions that can withstand gut passage; in some cases this significantly increases the growth rates of the newly settled spores (6, 122). These types of seaweeds may be considered herbivore tolerant. Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly. The

698 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...In aquatic systems, chemical cues determine feeding, habitat, and mating choices (e.g., Hay & Fenical 1988, 1996; Pawlik 1992; Breithaupt & Thiel 2008)....

    [...]

  • ...…on the plants they consume and that are especially susceptible to predation suggest that feeding preferences are commonly driven by the need to colonize hosts that provide escapes from consumers rather than by the direct food value of those hosts (see also Hay & Fenical 1988, 1996; Hay 1992, 1996)....

    [...]

  • ...In the past 20 years, the review of selected aspects of marine chemical ecology has become a growth industry (e.g., Hay & Fenical 1988, 1996; Paul 1992; Hay 1996; McClintock & Baker 2001; Paul et al. 2007; Pohnert et al. 2007; Amsler 2008), with numerous reviews focusing on specific groups…...

    [...]


Journal ArticleDOI
TL;DR: It is concluded that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Abstract: Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

641 citations


Journal ArticleDOI
TL;DR: This review concludes that relatively unstudied, ontogenetic shifts in concentrations and types of defenses occur in marine species, and patterns of larval chemical defenses appear to provide insights into the evolution of complex life cycles and of differing modes of development among marine invertebrates.
Abstract: In this review, I summarize recent developments in marine chemical ecology and suggest additional studies that should be especially productive. Direct tests in both the field and laboratory show that secondary metabolites commonly function as defenses against consumers. However, some metabolites also diminish fouling, inhibit competitors or microbial pathogens, and serve as gamete attractants; these alternative functions are less thoroughly investigated. We know little about how consumers perceive secondary metabolites or how ecologically realistic doses of defensive metabolites affect consumer physiology or fitness, as opposed to feeding behavior. Secondary metabolites have direct consequences, but they do not act in isolation from other prey characteristics or from the physical and biological environment in which organisms interact with their natural enemies. This mandates that marine chemical ecology be better integrated into a broader and more complex framework that includes aspects of physiological, population, community, and even ecosystem ecology. Recent advances in this area involve assessing how chemically mediated interactions are affected by physical factors such as flow, desiccation, UV radiation, and nutrient availability, or by biological forces such as the palatability or defenses of neighbors, fouling organisms, or microbial symbionts. Chemical defenses can vary dramatically among geographic regions, habitats, individuals within a local habitat, and within different portions of the same individual. Factors affecting this variance are poorly known, but include physical stresses and induction due to previous attack. Studies are needed to assess which consumers induce prey defenses, how responses vary in environments with differing physical characteristics, and whether the ‘induced’ responses are a direct response to consumer attack or are a defense against microbial pathogens invading via feeding wounds. Although relatively unstudied, ontogenetic shifts in concentrations and types of defenses occur in marine species, and patterns of larval chemical defenses appear to provide insights into the evolution of complex life cycles and of differing modes of development among marine invertebrates. The chemical ecology of marine microbes is vastly underappreciated even though microbes produce metabolites that can have devastating indirect effects on non-target organisms (e.g., red tide related fish kills) and significantly affect entire ecosystems. The natural functions of these metabolites are poorly understood, but they appear to deter both consumers and other microbes. Additionally, marine macro-organisms use metabolites from microbial symbionts to deter consumers, subdue prey, and defend their embryos from pathogens. Microbial chemical ecology offers unlimited possibilities for investigators that develop rigorous and more ecologically relevant approaches.

592 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...…on the plants they consume and that are especially susceptible to predation suggest that feeding preferences are commonly driven by the need to colonize hosts that provide escapes from consumers rather than by the direct food value of those hosts (see also Hay & Fenical 1988, 1996; Hay 1992, 1996)....

    [...]

  • ...In other instances the larvae are chemically defended, but the adults are not and appear instead to rely more on physical/structural defenses (Lindquist & Hay 1996)....

    [...]

  • ...…past 20 years, the review of selected aspects of marine chemical ecology has become a growth industry (e.g., Hay & Fenical 1988, 1996; Paul 1992; Hay 1996; McClintock & Baker 2001; Paul et al. 2007; Pohnert et al. 2007; Amsler 2008), with numerous reviews focusing on specific groups (seaweeds…...

    [...]

  • ...Once larvae or embryos are released from brooding adults, they can be at considerable risk of predation in the plankton, but even more so as they recruit to the benthos where both fish and invertebrate predators are commonly concentrated (Lindquist & Hay 1996)....

    [...]

  • ...…of resistance to host chemical defenses, selective consumption of those hosts, being cued to feed by the specific host chemicals that deter other consumers, and sequestration by the specialist of its host’s chemical defenses, thus becoming immune to many of its own enemies (Hay 1992, 1996)....

    [...]


Journal ArticleDOI
TL;DR: The contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein is supported.
Abstract: Summary: Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3- (oxohexanoy1)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non- AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.

581 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...This inhibition occurs because halogenated furanones interfere with the bacteria’s signal-based regulatory systems that control surface motility, exoenzyme production, and biofilm formation/stability (Manefield et al. 1999, 2002; Rasmussen et al. 2000; McDougald et al. 2001)....

    [...]