scispace - formally typeset
Open AccessJournal ArticleDOI

Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.

Mark E. Hay
- 25 Mar 2009 - 
- Vol. 1, Iss: 1, pp 193-212
Reads0
Chats0
TLDR
How chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes is reviewed.
Abstract
Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequ...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Simple models for studying complex spatiotemporal patterns of animal behavior

TL;DR: Depending on the nature and the properties of the movement stimulus, either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed ‘hybrid’ approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way are proposed.
Journal ArticleDOI

Black sea urchins evaluate predation risk using chemical signals from a predator and injured con- and heterospecific prey

TL;DR: In addition to the dilution effect imposed by the habit of living in dense assemblages, black sea urchins use the defence strategy of detecting an upcoming threat via chemical cue from injured prey when cues emanating from the echinivorous predator itself are not detectable.
Book ChapterDOI

H5 Consequences of Anthropogenic Changes in the Sensory Landscape of Marine Animals

TL;DR: Oceanography and Marine Biology: An Annual Review (OMBAR) as mentioned in this paper is one of the most cited sources in marine science and oceanography and has been published for more than 50 years.
Journal ArticleDOI

Cytotoxic compounds from Laurencia pacifica

TL;DR: In this paper, the secondary metabolites in the algae, Laurencia pacifica, were investigated and the authors explored the nature of secondary metabolites of the algae and its secondary metabolites.
Journal ArticleDOI

The combined effects of climate change stressors and predatory cues on a mussel species

TL;DR: In this paper, the direct effects of ocean warming (OW) and acidification (OA) along with nonconsumptive effects (NCEs) of a predatory crab and/or a predatory snail on the habitat-forming mussel Perumytilus purpuratus were assessed.
References
More filters
Journal ArticleDOI

Centuries of Human-Driven Change in Salt Marsh Ecosystems

TL;DR: It is concluded that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Journal ArticleDOI

Marine Plant-Herbivore Interactions: The Ecology of Chemical Defense

TL;DR: Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly and these types of seaweeds may be considered herbivore tolerant.
Journal ArticleDOI

Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein.

TL;DR: The contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein is supported.
Journal ArticleDOI

Marine chemical ecology: what's known and what's next?

TL;DR: This review concludes that relatively unstudied, ontogenetic shifts in concentrations and types of defenses occur in marine species, and patterns of larval chemical defenses appear to provide insights into the evolution of complex life cycles and of differing modes of development among marine invertebrates.
Related Papers (5)