scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.

25 Mar 2009-Annual Review of Marine Science (Annual Reviews)-Vol. 1, Iss: 1, pp 193-212
TL;DR: How chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes is reviewed.
Abstract: Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequ...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work identified a significant phylogenetic bias in the octocoral bioprospecting, which calls for the development of a concerted discovery strategy and provides an ecologically centered workflow prioritizing biological function ahead of chemical identification.
Abstract: Marine natural products (NPs) represent an impressive source of novel bioactive molecules with major biotechnological applications. Nevertheless, the usual chemical and applied perspective leading most of bioprospecting projects come along with various limitations blurring our understanding of the extensive marine chemical diversity. Here, we propose several guidelines: (i) to optimize bioprospecting and (ii) to refine our knowledge on marine chemical ecology focusing on octocorals, one of the most promising sources of marine NPs. We identified a significant phylogenetic bias in the octocoral bioprospecting, which calls for the development of a concerted discovery strategy. Given the gap existing between the number of isolated NPs and the knowledge regarding their functions, we provide an ecologically centered workflow prioritizing biological function ahead of chemical identification. Furthermore, we illustrate how -omic technologies should rapidly increase our knowledge on solving different aspects of the ecology and evolution of marine NPs.

11 citations


Cites background from "Marine chemical ecology: chemical s..."

  • ...population dynamics, community structure, food web interactions, as well as ecosystem functioning [41]....

    [...]

Journal ArticleDOI
TL;DR: The results of this study suggest that P. marksi is capable of detecting a predator's airborne cues, though the nature and identity of these cues remain unknown, and it appears that the constellation array of the fixed finger does function in detecting these cues.
Abstract: Chemically induced predator avoidance behaviors exist in many arthropods. In this paper, we examined the behavioral responses of the desert scorpion, Paruroctonus marksi (Haradon, 1984), to airborne chemical cues from a natural predator, the larger scorpion Hadrurus arizonensis (Ewing, 1928). We used a Y-shaped, dual-choice olfactometer to test for avoidance behavior in the presence of a known predator, H. arizonensis. Prior to this study there has been little research done on chemically induced predator avoidance behaviors in scorpions. The results of this study suggest that P. marksi is capable of detecting a predator's airborne cues, though the nature and identity of these cues remain unknown, and it appears that the constellation array of the fixed finger does function in detecting these cues. We also discuss the importance of adaptive predator avoidance behaviors.

11 citations


Cites background from "Marine chemical ecology: chemical s..."

  • ...The majority of studies have documented chemically mediated antipredator behaviors in aquatic organisms, with fewer focusing on terrestrial vertebrates (Hay 2009; Ferrari et al. 2010)....

    [...]

Journal ArticleDOI
TL;DR: A conceptual synthesis of effects of global change on marine sensory ecology is presented, based on a literature review, that supports several predictions for how particular sensory pathway steps – production, transmission, and reception/processing of cues/signals - are affected by environmental change.
Abstract: Human-caused environmental change will have significant non-lethal and indirect impacts on organisms due to altered sensory pathways, with consequences for ecological interactions. While a growing body of work addresses how global ocean change can impair the way organisms obtain and use information to direct their behavior, these efforts have typically focused on one step of the pathway (e.g. reception of a cue/signal), one sensory modality (e.g. visual), or one environmental factor (e.g. temperature). An integrated view of how aspects of environmental change will impact multiple sensory pathways and consequently ecological processes is needed to better anticipate broader consequences for marine ecosystems. Here, we present a conceptual synthesis of effects of global change on marine sensory ecology, based on a literature review. Our review supports several predictions for how particular sensory pathway steps – production, transmission, and reception/processing of cues/signals - are affected by environmental change. First, the production and reception/processing of multiple modalities of cues/signals are vulnerable to multiple global change stressors, indicating that there are generalizable mechanisms by which environmental change impairs these pathways steps, leading to altered sensory pathway outcomes. Factors that enhance organismal stress as a whole may amplify impacts to these sensory pathways. Second, global change factors tend to affect specific modalities of cue/signal transmission. Consequently, local impacts on ecological processes linked with cue/signal transmission will vary depending on environmental stressor(s) present and the corresponding sensory modality. Finally, because many ecological and evolutionary interactions rely on sensory processing, impairment of sensory pathways may frequently underpin impacts of global ocean change on marine ecosystems. Effects on individual sensory processes will integrate to shape processes like mating, predation, and habitat selection, and we highlight new insights on impacts to ecological interactions by employing our mechanistic conceptual framework.

11 citations


Cites background from "Marine chemical ecology: chemical s..."

  • ...…realm, such as predator-prey interactions, mate choice, habitat selection, aggregation activities, long distance navigation, and larval settlement (Zimmer and Butman, 2000; Connaughton et al., 2002; Kingsford et al., 2002; Lohmann et al., 2008; Strod et al., 2008; Hay, 2009; Munday et al., 2009)....

    [...]

  • ..., 2002) and can therefore critically mediate many ecological processes in the marine realm, such as predator-prey interactions, mate choice, habitat selection, aggregation activities, long distance navigation, and larval settlement (Zimmer and Butman, 2000; Connaughton et al., 2002; Kingsford et al., 2002; Lohmann et al., 2008; Strod et al., 2008; Hay, 2009; Munday et al., 2009)....

    [...]

Book ChapterDOI
01 Jan 2015
TL;DR: The present work provides an overview of some of the most promising marine bioactive compounds, from a therapeutic point of view, isolated from cnidarians since the year 2000, with emphasis on the sustainable production of target cnids biomass and the role played by symbiotic microorganisms in the synthesis of important biomolecules.
Abstract: Cnidaria is a large, diverse and ecologically important phylum of marine invertebrates, which includes corals, sea fans, anemones, and jellyfishes. It contains over 11000 Open image in new window species, 7500 Open image in new window of them belonging to the class Anthozoa. Over 3000 Open image in new window marine natural products have been described from this phylum alone, most of them in the twenty-first century. The present work provides an overview of some of the most promising marine bioactive compounds, from a therapeutic point of view, isolated from cnidarians since the year 2000. The order Alcyonacea (class Anthozoa) exhibits the highest number of species yielding promising compounds. Antitumor activity has been the major area of interest in the screening of cnidarian compounds, the most promising ones being terpenoids (monoterpenoids, diterpenoids, and sesquiterpenoids). Future trends and challenges for the bioprospecting of new marine bioactive compounds produced by cnidarians are also discussed, with emphasis on the sustainable production of target cnidarians biomass and the role played by symbiotic microorganisms in the synthesis of important biomolecules.

11 citations

Journal ArticleDOI
Jing Chen1, Wangquan Ye1, Jinjia Guo1, Zhao Luo1, Ying Li1 
13 Jul 2016-Sensors
TL;DR: It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide, demonstrating that the fluorescence-Raman spectral system has great potential in detection of chL-a, carotenoids, CDOM and SO42− in the ocean.
Abstract: A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean.

11 citations

References
More filters
Journal Article

839 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...…to chemical cues from specific hosts, or corals that settle in response to chemical traits of specific crustose coralline algae, or of soft-substrate animals that recruit to or avoid sands treated with specific chemical cues or extracts (e.g., Pawlik 1992, Krug & Manzi 1999, Hadfield & Paul 2001)....

    [...]

  • ...In aquatic systems, chemical cues determine feeding, habitat, and mating choices (e.g., Hay & Fenical 1988, 1996; Pawlik 1992; Breithaupt & Thiel 2008)....

    [...]

  • ...…stimulating feeding once prey have been contacted; compounds responsible for attraction from a distance have rarely been investigated for adult specialist consumers [compounds that cue larval settlement have been investigated; see Pawlik (1992), Krug & Manzi (1999), and Hadfield & Paul (2001)]....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Abstract: Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

770 citations

Journal ArticleDOI
TL;DR: Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly and these types of seaweeds may be considered herbivore tolerant.
Abstract: Herbivory has a profound effect on seaweeds in both temperate and tropical communities (11, 17, 21, 33, 43, 47, 80, 124). This is especially true on coral reefs where 60-97% (11, 42) of the total seaweed production may be removed by herbivores. To persist in marine communities, seaweeds must escape, deter, or tolerate herbivory. The ecological and evolutionary importance of spatial and temporal escapes has been extensively studied for seaweeds and adequately reviewed in the recent literature (33, 45, 47, 71, 80). The ability of seaweeds to tolerate herbivory has received limited attention. On coral reefs, rapidly growing filamentous algae are heavily grazed, but the algae quickly replace these losses and appear to be dependent upon herbivores to prevent their habitat from being overgrown by larger but less herbivoretolerant species (11, 71). Additionally, several seaweeds have spores or vegetative portions that can withstand gut passage; in some cases this significantly increases the growth rates of the newly settled spores (6, 122). These types of seaweeds may be considered herbivore tolerant. Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly. The

722 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...In aquatic systems, chemical cues determine feeding, habitat, and mating choices (e.g., Hay & Fenical 1988, 1996; Pawlik 1992; Breithaupt & Thiel 2008)....

    [...]

  • ...…on the plants they consume and that are especially susceptible to predation suggest that feeding preferences are commonly driven by the need to colonize hosts that provide escapes from consumers rather than by the direct food value of those hosts (see also Hay & Fenical 1988, 1996; Hay 1992, 1996)....

    [...]

  • ...In the past 20 years, the review of selected aspects of marine chemical ecology has become a growth industry (e.g., Hay & Fenical 1988, 1996; Paul 1992; Hay 1996; McClintock & Baker 2001; Paul et al. 2007; Pohnert et al. 2007; Amsler 2008), with numerous reviews focusing on specific groups…...

    [...]

Journal ArticleDOI
TL;DR: The contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein is supported.
Abstract: Summary: Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3- (oxohexanoy1)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non- AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.

612 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...This inhibition occurs because halogenated furanones interfere with the bacteria’s signal-based regulatory systems that control surface motility, exoenzyme production, and biofilm formation/stability (Manefield et al. 1999, 2002; Rasmussen et al. 2000; McDougald et al. 2001)....

    [...]

Journal ArticleDOI
TL;DR: This review concludes that relatively unstudied, ontogenetic shifts in concentrations and types of defenses occur in marine species, and patterns of larval chemical defenses appear to provide insights into the evolution of complex life cycles and of differing modes of development among marine invertebrates.

607 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...…on the plants they consume and that are especially susceptible to predation suggest that feeding preferences are commonly driven by the need to colonize hosts that provide escapes from consumers rather than by the direct food value of those hosts (see also Hay & Fenical 1988, 1996; Hay 1992, 1996)....

    [...]

  • ...In other instances the larvae are chemically defended, but the adults are not and appear instead to rely more on physical/structural defenses (Lindquist & Hay 1996)....

    [...]

  • ...…past 20 years, the review of selected aspects of marine chemical ecology has become a growth industry (e.g., Hay & Fenical 1988, 1996; Paul 1992; Hay 1996; McClintock & Baker 2001; Paul et al. 2007; Pohnert et al. 2007; Amsler 2008), with numerous reviews focusing on specific groups (seaweeds…...

    [...]

  • ...Once larvae or embryos are released from brooding adults, they can be at considerable risk of predation in the plankton, but even more so as they recruit to the benthos where both fish and invertebrate predators are commonly concentrated (Lindquist & Hay 1996)....

    [...]

  • ...…of resistance to host chemical defenses, selective consumption of those hosts, being cued to feed by the specific host chemicals that deter other consumers, and sequestration by the specialist of its host’s chemical defenses, thus becoming immune to many of its own enemies (Hay 1992, 1996)....

    [...]