scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.

25 Mar 2009-Annual Review of Marine Science (Annual Reviews)-Vol. 1, Iss: 1, pp 193-212
TL;DR: How chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes is reviewed.
Abstract: Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequ...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The results show that the flesh of gastropod needs not to be an obstacle to the use of their shells, and the ability to remove the flesh, feed on dead gastropods, and occupy the shell makes hermit crabs exceptional as they exploit a limited resource as refuge and food.

5 citations

Journal ArticleDOI
TL;DR: Working with larvae of the marine gastropod Crepidula fornicata, this work examined the impacts of sudden, short-term, and prolonged exposure to reduced pH as low as 7.5 on larval survival and growth, the onset of metamorphic competence, and the ability of larvae to perceive inductive cues and metamorphose in their presence.
Abstract: Ocean pH has been declining since the start of the Industrial Revolution, and is predicted to continue declining for at least another 200 years. Although the chemical cues that induce larval metamorphosis in marine invertebrates in part determine the distribution and persistence of many coastal marine communities, few studies have examined the effects of ocean acidification on the timing of metamorphic competence or the ability of larval invertebrates to metamorphose in response to environmental cues. Working with larvae of the marine gastropod Crepidula fornicata, we examined the impacts of sudden, short-term (2 h), and prolonged (several weeks) exposure to reduced pH as low as 7.5 on larval survival and growth, the onset of metamorphic competence, and the ability of larvae to perceive inductive cues and metamorphose in their presence. Unexpectedly, although larvae reared at pH 7.5 grew more slowly and took longer to become competent to metamorphose, exposure to acidified conditions did not appreciably impair larval cue perception for metamorphosis.

5 citations

Dissertation
18 May 2016
TL;DR: This thesis integrates phylogenetics, functional morphology, biomechanics, information theory, and behavior to investigate whether and how bipedality increases fitness in desert ecosystems, and whether bipedal rodents convergently evolved to have the role in their respective ecosystems.
Abstract: Bipedalism is commonly assumed to be an adaptive convergence because it has evolved independently three times in small desert rodents. However, the functional benefits of bipedality in this ecosystem have long been unclear. In this thesis I integrate phylogenetics, functional morphology, biomechanics, information theory, and behavior to investigate whether and how bipedality increases fitness in desert ecosystems, and whether bipedal rodents convergently evolved to have the role in their respective ecosystems. Based on the diversity of extant dipodid rodents, I begin by statistically reconstructing the pattern of morphological evolution in jerboas. I find that the strongest indicator of bipedality is metatarsal to humerus length, and that changes in this ratio are associated with increased rates of speciation, supporting a punctuated equilibrium pattern of evolution in this clade. Furthermore, the distinct patterns of morphological evolution suggest that a complex suite of genetic and developmental mechanisms governs the acquisition of bipedality in jerboas. I then use an inverse dynamics approach to characterize the biomechanics of bipedal hopping in a derived jerboa. I find that the dynamics of jerboa hopping are generated predominantly by muscular contractions, rather than tendon–based elastic energy storage and return between strides. Therefore hopping in small rodents favors rapid production and absorption of forces, rather than sustained bouts of steady–state locomotion. By reviewing predator–prey studies in biomechanics, ecology, and evolution I hypothesize that ricochetal locomotion enhances the ability of small rodents to evade predators that hunt via ballistic interception. I then develop Information Theoretic techniques to measure the unpredictability of escape trajectories in sympatric bipedal and quadrupedal rodents. As expected, bipedal rodents use significantly more unpredictable escape trajectories, likely enhancing predator evasion ability

5 citations


Cites background from "Marine chemical ecology: chemical s..."

  • ...Similarly, aquatic prey may choose to “hide” in areas of low flow, thereby reducing the likelihood that a predator will pick up their chemical cues (Hay, 2009)....

    [...]

Journal ArticleDOI
TL;DR: A comparative and untargeted metabolomic approach was applied to the surrounding seawater to identify putative chemomarkers that could explain the cave-dwelling crustaceans’ behaviours.
Abstract: Sponges are benthic organisms that are dominant in several ecosystems and known to produce a huge chemical diversity. The putative release of some specialized metabolites in the surrounding seawater is still a matter of debate, but the presence of such compounds in the environment of sponges is thought to influence the behaviour of various mobile organisms and may, thus, contribute to benthic ecosystem structuring and functioning. Underwater Mediterranean caves are characterized by stable environmental conditions and sessile species assemblages dominated by sponges. A two-choice test system was developed to assess the response of two cave-dwelling crustaceans (Hemimysis margalefi and Palaemon serratus) and two other species living in shallow water environments (Leptomysis sp. and Palaemon elegans) to various seawater treatments: control− seawater from an exposed coastline, control+ seawater coming from an underwater cave, and seawater conditioned with four Mediterranean sponges commonly found at the entrance of underwater caves (Aplysina cavernicola, Haliclona fulva, Oscarella tuberculata and Spongia officinalis) or their chemical extracts. We tested the swimming behaviour of these crustacean species in three complementary experiments: (1) control seawater vs. cave seawater; (2) control seawater vs. seawater conditioned with the sponge community, (3) control seawater vs. seawater containing chemical extracts of the same sponge community. Both cave-dwelling crustaceans were attracted by the seawater conditioned with the sponge community, while Leptomysis sp. spent more time in the control seawater and P. elegans exhibited indifferent responses. All four crustacean species avoided the seawater containing the sponge extracts. Interestingly, the response shown by the crustaceans was affected by the time of day. A comparative and untargeted metabolomic approach was applied to the surrounding seawater to identify putative chemomarkers that could explain the crustaceans’ behaviours. Among other compounds found in the seawater, a family of metabolites with molecular formulae in accordance with those of oxylipin derivatives is released by sponges and may, therefore, serve as chemical cues acting as kairomones in the homing behaviour of cave-dwelling crustaceans.

5 citations


Cites background from "Marine chemical ecology: chemical s..."

  • ...Chemical mediation 52 plays a key role in such distance interactions by influencing the behavioural ecology of mobile 53 organisms (Hay 2009)....

    [...]

References
More filters
Journal Article

839 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...…to chemical cues from specific hosts, or corals that settle in response to chemical traits of specific crustose coralline algae, or of soft-substrate animals that recruit to or avoid sands treated with specific chemical cues or extracts (e.g., Pawlik 1992, Krug & Manzi 1999, Hadfield & Paul 2001)....

    [...]

  • ...In aquatic systems, chemical cues determine feeding, habitat, and mating choices (e.g., Hay & Fenical 1988, 1996; Pawlik 1992; Breithaupt & Thiel 2008)....

    [...]

  • ...…stimulating feeding once prey have been contacted; compounds responsible for attraction from a distance have rarely been investigated for adult specialist consumers [compounds that cue larval settlement have been investigated; see Pawlik (1992), Krug & Manzi (1999), and Hadfield & Paul (2001)]....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Abstract: Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

770 citations

Journal ArticleDOI
TL;DR: Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly and these types of seaweeds may be considered herbivore tolerant.
Abstract: Herbivory has a profound effect on seaweeds in both temperate and tropical communities (11, 17, 21, 33, 43, 47, 80, 124). This is especially true on coral reefs where 60-97% (11, 42) of the total seaweed production may be removed by herbivores. To persist in marine communities, seaweeds must escape, deter, or tolerate herbivory. The ecological and evolutionary importance of spatial and temporal escapes has been extensively studied for seaweeds and adequately reviewed in the recent literature (33, 45, 47, 71, 80). The ability of seaweeds to tolerate herbivory has received limited attention. On coral reefs, rapidly growing filamentous algae are heavily grazed, but the algae quickly replace these losses and appear to be dependent upon herbivores to prevent their habitat from being overgrown by larger but less herbivoretolerant species (11, 71). Additionally, several seaweeds have spores or vegetative portions that can withstand gut passage; in some cases this significantly increases the growth rates of the newly settled spores (6, 122). These types of seaweeds may be considered herbivore tolerant. Although numerous seaweed characteristics can deter some herbivores, the effects of morphology and chemistry have been studied most thoroughly. The

722 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...In aquatic systems, chemical cues determine feeding, habitat, and mating choices (e.g., Hay & Fenical 1988, 1996; Pawlik 1992; Breithaupt & Thiel 2008)....

    [...]

  • ...…on the plants they consume and that are especially susceptible to predation suggest that feeding preferences are commonly driven by the need to colonize hosts that provide escapes from consumers rather than by the direct food value of those hosts (see also Hay & Fenical 1988, 1996; Hay 1992, 1996)....

    [...]

  • ...In the past 20 years, the review of selected aspects of marine chemical ecology has become a growth industry (e.g., Hay & Fenical 1988, 1996; Paul 1992; Hay 1996; McClintock & Baker 2001; Paul et al. 2007; Pohnert et al. 2007; Amsler 2008), with numerous reviews focusing on specific groups…...

    [...]

Journal ArticleDOI
TL;DR: The contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein is supported.
Abstract: Summary: Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3- (oxohexanoy1)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non- AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.

612 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...This inhibition occurs because halogenated furanones interfere with the bacteria’s signal-based regulatory systems that control surface motility, exoenzyme production, and biofilm formation/stability (Manefield et al. 1999, 2002; Rasmussen et al. 2000; McDougald et al. 2001)....

    [...]

Journal ArticleDOI
TL;DR: This review concludes that relatively unstudied, ontogenetic shifts in concentrations and types of defenses occur in marine species, and patterns of larval chemical defenses appear to provide insights into the evolution of complex life cycles and of differing modes of development among marine invertebrates.

607 citations


"Marine chemical ecology: chemical s..." refers background in this paper

  • ...…on the plants they consume and that are especially susceptible to predation suggest that feeding preferences are commonly driven by the need to colonize hosts that provide escapes from consumers rather than by the direct food value of those hosts (see also Hay & Fenical 1988, 1996; Hay 1992, 1996)....

    [...]

  • ...In other instances the larvae are chemically defended, but the adults are not and appear instead to rely more on physical/structural defenses (Lindquist & Hay 1996)....

    [...]

  • ...…past 20 years, the review of selected aspects of marine chemical ecology has become a growth industry (e.g., Hay & Fenical 1988, 1996; Paul 1992; Hay 1996; McClintock & Baker 2001; Paul et al. 2007; Pohnert et al. 2007; Amsler 2008), with numerous reviews focusing on specific groups (seaweeds…...

    [...]

  • ...Once larvae or embryos are released from brooding adults, they can be at considerable risk of predation in the plankton, but even more so as they recruit to the benthos where both fish and invertebrate predators are commonly concentrated (Lindquist & Hay 1996)....

    [...]

  • ...…of resistance to host chemical defenses, selective consumption of those hosts, being cued to feed by the specific host chemicals that deter other consumers, and sequestration by the specialist of its host’s chemical defenses, thus becoming immune to many of its own enemies (Hay 1992, 1996)....

    [...]