scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Marine microalgae for production of biofuels and chemicals

TL;DR: The production of biofuels and chemicals by marine microalgae and their advantages and potential from the aspect of bioprocess are summarized and novel genome editing tools that could further exploit the potential of marine micro algae were reviewed.
About: This article is published in Current Opinion in Biotechnology.The article was published on 2018-04-01. It has received 119 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the potential risks associated with the exploitation and processing of GM algae and proposed appropriate mitigation strategies to deal with them, which is important to a successful commercialized production of FGB.
Abstract: Fourth generation biofuel (FGB) uses genetically modified (GM) algae to enhance biofuel production. Although GM algae biofuel is a well-known alternative to fossil fuels, the potential environmental and health-related risks are still of great concern. An evaluation of these concerns and accordingly devising appropriate mitigation strategies to deal with them are important to a successful commercialized production of FGB. While extensive research has been carried out on genetic modification and other technologies that aim to increase the productivity of algae strains, only a handful of them deal with the legislative limitations imposed on exploiting and processing GM algae. This paper examines this legislation and the mitigation strategies to meet potential risks associated with the exploitation and processing of FGB. Open-pond system is an economic solution for large-scale cultivation of microalgae; however, the concern regarding the health and environmental risk of cultivating GM algae and the associated stringent regulations is considered as the main barrier of FGB production. Disposal of the residue is another important issue that should be considered in FGB production. The byproducts obtained from energy extraction step and residual water from the harvesting process may contain plasmid or chromosomal DNA that may cause the risk of lateral gene transfer. Hence an appropriate mitigation practices should be used for replacement of the hazardous water residue and by-products with more environmentally friendly alternatives. The results obtained from several field testing projects for open-environment exploitation of GM algae show that under the various conditions used, there was no apparent proof to support possible horizontal gene transfer in release of GM algae.

288 citations

Journal ArticleDOI
TL;DR: The environmental and societal consequences of the increasing levels of carbon dioxide in our atmosphere are among the most significant challenges society currently faces as discussed by the authors, and carbon dioxide utilisation is one of the most important challenges.
Abstract: The environmental and societal consequences of the increasing levels of carbon dioxide in our atmosphere are among the most significant challenges society currently faces. Carbon dioxide utilizatio...

206 citations

Journal ArticleDOI
TL;DR: This work examines the known and potential impacts of ocean pollution on human health, identifies gaps in knowledge, project future trends, and proposes priorities for interventions to control and prevent pollution of the seas and safeguard human health.
Abstract: Background: Pollution – unwanted waste released to air, water, and land by human activity – is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources – coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children’s risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals – phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste – can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South – environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth’s resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.

197 citations

Journal ArticleDOI
TL;DR: How emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and drive the establishment of an algal-based bioeconomy is discussed.
Abstract: Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.

168 citations

Journal ArticleDOI
TL;DR: In this paper, the environmental impacts of alternative approaches to biofuel production (i.e., first, second, and third generation biofuels), with a focus on biodiversity and ecosystem services, were contrasted to develop a set of criteria for guiding the identification of sustainable bio-fuel production alternatives, as well as strategies for decreasing the economic barriers that prevent the implementation of more sustainable bio fuel production systems.
Abstract: Novel energy production systems are needed that not only offer reductions in greenhouse gas emissions but also cause fewer overall environmental impacts. How to identify and implement more sustainable biofuel production alternatives, and how to overcome economic challenges for their implementation, is a matter of debate. In this study, the environmental impacts of alternative approaches to biofuel production (i.e., first, second, and third generation biofuels), with a focus on biodiversity and ecosystem services, were contrasted to develop a set of criteria for guiding the identification of sustainable biofuel production alternatives (i.e., those that maximize socioeconomic and environmental benefits), as well as strategies for decreasing the economic barriers that prevent the implementation of more sustainable biofuel production systems. The identification and implementation of sustainable biofuel production alternatives should be based on rigorous assessments that integrate socioeconomic and environmental objectives at local, regional, and global scales. Further development of environmental indicators, standardized environmental assessments, multi-objective case studies, and globally integrated assessments, along with improved estimations of biofuel production at fine spatial scales, can enhance the identification of more sustainable biofuel production systems. In the short term, several governmental mandates and incentives, along with the development of financial and market-based mechanisms and applied research partnerships, can accelerate the implementation of more sustainable biofuel production alternatives. The set of criteria and strategies developed here can guide decision making towards the identification and adoption of sustainable biofuel production systems.

161 citations

References
More filters
Journal ArticleDOI
Yusuf Chisti1
TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.

9,030 citations

Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: In this paper, the authors describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions, and highlight challenges and future directions.

4,361 citations

Journal ArticleDOI
TL;DR: The first use of microalgae by humans dates back 2000 years to the Chinese, who used Nostoc to survive during famine, while future research should focus on the improvement of production systems and the genetic modification of strains.

3,793 citations

01 Jun 2014
TL;DR: The development and applications of Cas9 are described for a variety of research or translational applications while highlighting challenges as well as future directions.
Abstract: Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.

3,270 citations

Journal ArticleDOI
TL;DR: A review of achievements made possible by site-specific nuclease technologies and applications of these reagents for genetic analysis and manipulation, including the therapeutic potential of ZFNs and TALENs, and future prospects for the field are discussed.

3,235 citations