scispace - formally typeset
Search or ask a question
Book•

Marschner's Mineral Nutrition of Higher Plants

TL;DR: The third edition of Marschner's "Mineral Nutrition of Higher Plants" as mentioned in this paper is the most comprehensive and comprehensive reference on plant mineral nutrition, which has been published since 1996.
Abstract: Respected and known worldwide in the field for his research in plant nutrition, Dr. Horst Marschner authored two editions of Mineral Nutrition of Higher Plants. His research greatly advanced the understanding of rhizosphere processes and trace element uptake by plants and he published extensively in a variety of plant nutrition areas. While doing agricultural research in West Africa in 1996, Dr. Marschner contracted malaria and passed away, and until now this legacy title went unrevised. Despite the passage of time, it remains the definitive reference on plant mineral nutrition. Great progress has been made in the understanding of various aspects of plant nutrition and in recent years the view on the mode of action of mineral nutrients in plant metabolism and yield formation has shifted. Nutrients are not only viewed as constituents of plant compounds (constructing material), enzymes and electron transport chains but also as signals regulating plant metabolism via complex signal transduction networks. In these networks, phytohormones also play an important role. Principles of the mode of action of phytohormones and examples of the interaction of hormones and mineral nutrients on source and sink strength and yield formation are discussed in this edition. Phytohormones have a role as chemical messengers (internal signals) to coordinate development and responses to environmental stimuli at the whole plant level. These and many other molecular developments are covered in the long-awaited new edition. Esteemed plant nutrition expert and Horst Marschner's daughter, Dr. Petra Marschner, together with a team of key co-authors who worked with Horst Marschner on his research, now present a thoroughly updated and revised third edition of Marschner's Mineral Nutrition of Higher Plants, maintaining its value for plant nutritionists worldwide. Key Features * Second Edition of this established text * Structure of the book remains the same * 50% of the reference and 50% of the figures and tables have been replaced * Whole of the text has been revised * Coverage of plant (soil interactions has been increased considerably)
Citations
More filters
Journal Article•DOI•
TL;DR: The emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging is focused on.
Abstract: Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.

1,136 citations

Journal Article•DOI•
TL;DR: This review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks, and explores the possible geographical pathways of heavy metals in such subsystems.

952 citations

Journal Article•DOI•
TL;DR: A systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.
Abstract: Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.

685 citations

Journal Article•DOI•
TL;DR: Improved P-use efficiency can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts.
Abstract: Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.

655 citations


Cites methods from "Marschner's Mineral Nutrition of Hi..."

  • ...Data are from Bieleski (1968), Chapin & Bieleski (1982), Chapin et al. (1982), Chapin et al. (1986), Tachibana (1987), Chapin & Shaver (1988) and Marschner (2012)....

    [...]

Journal Article•DOI•
TL;DR: Several pieces of evidence highlight that the inoculation of plants with PGPR can have considerable effects on plant at both physiological and molecular levels, suggesting the possibility that soil biota could stimulate plants being more efficient in retrieving nutrients from soil and coping with abiotic stresses.
Abstract: Plant growth-promoting rhizobacteria (PGPR) are soil bacteria that are able to colonize rhizosphere and to enhance plant growth by means of a wide variety of mechanisms like organic matter mineralization, biological control against soil-borne pathogens, biological nitrogen fixation, and root growth promotion. A very interesting feature of PGPR is their ability of enhancing nutrient bioavailability. Several bacterial species have been characterized as P-solubilizing microorganisms while other species have been shown to increase the solubility of micronutrients, like those that produce siderophores for Fe chelation. The enhanced amount of soluble macro- and micronutrients in the close proximity of the soil-root interface has indeed a positive effect on plant nutrition. Furthermore, several pieces of evidence highlight that the inoculation of plants with PGPR can have considerable effects on plant at both physiological and molecular levels (e.g., induction of rhizosphere acidification, up- and downregulation of genes involved in ion uptake, and translocation), suggesting the possibility that soil biota could stimulate plants being more efficient in retrieving nutrients from soil and coping with abiotic stresses. However, the molecular mechanisms underlying these phenomena, the signals involved as well as the potential applications in a sustainable agriculture approach, and the biotechnological aspects for possible rhizosphere engineering are still matters of discussion.

564 citations


Cites background from "Marschner's Mineral Nutrition of Hi..."

  • ...Root uptake of Pi is a process depending on metabolic energy, where the driving force is guaranteed by the activity of plasma membrane H+ATPase (Liang et al. 2014)....

    [...]