scispace - formally typeset
Open accessPosted Content

Masked Face Recognition: Human vs. Machine

Abstract: The recent COVID-19 pandemic has increased the focus on hygienic and contactless identity verification methods. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a mask on face recognition in a collaborative environment is currently sensitive yet understudied issue. Recent reports have tackled this by evaluating the masked probe effect on the performance of automatic face recognition solutions. However, such solutions can fail in certain processes, leading to performing the verification task by a human expert. This work provides a joint evaluation and in-depth analyses of the face verification performance of human experts in comparison to state-of-the-art automatic face recognition solutions. This involves an extensive evaluation with 12 human experts and 4 automatic recognition solutions. The study concludes with a set of take-home messages on different aspects of the correlation between the verification behavior of human and machine.

... read more

Citations
  More

6 results found


Open accessProceedings ArticleDOI: 10.1109/BIOSIG52210.2021.9548320
27 Sep 2021-
Abstract: The recent Covid-19 pandemic and the fact that wearing masks in public is now mandatory in several countries, created challenges in the use of face recognition systems (FRS). In this work, we address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS when verifying masked vs unmasked faces compared to verifying only unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode. The results obtained by our proposed method show improvements in a detailed step-wise ablation study. The conducted study showed significant performance gains induced by our proposed training paradigm and modified triplet loss on two evaluation databases.

... read more

2 Citations


Open accessPosted Content
Abstract: The recent Covid-19 pandemic and the fact that wearing masks in public is now mandatory in several countries, created challenges in the use of face recognition systems (FRS). In this work, we address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS when verifying masked vs unmasked faces compared to verifying only unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode. The results obtained by our proposed method show improvements in a detailed step-wise ablation study. The conducted study showed significant performance gains induced by our proposed training paradigm and modified triplet loss on two evaluation databases.

... read more

1 Citations


Open accessPosted Content
Abstract: The COVID-19 pandemic has drastically changed accepted norms globally. Within the past year, masks have been used as a public health response to limit the spread of the virus. This sudden change has rendered many face recognition based access control, authentication and surveillance systems ineffective. Official documents such as passports, driving license and national identity cards are enrolled with fully uncovered face images. However, in the current global situation, face matching systems should be able to match these reference images with masked face images. As an example, in an airport or security checkpoint it is safer to match the unmasked image of the identifying document to the masked person rather than asking them to remove the mask. We find that current facial recognition techniques are not robust to this form of occlusion. To address this unique requirement presented due to the current circumstance, we propose a set of re-purposed datasets and a benchmark for researchers to use. We also propose a contrastive visual representation learning based pre-training workflow which is specialized to masked vs unmasked face matching. We ensure that our method learns robust features to differentiate people across varying data collection scenarios. We achieve this by training over many different datasets and validating our result by testing on various holdout datasets. The specialized weights trained by our method outperform standard face recognition features for masked to unmasked face matching. We believe the provided synthetic mask generating code, our novel training approach and the trained weights from the masked face models will help in adopting existing face recognition systems to operate in the current global environment. We open-source all contributions for broader use by the research community.

... read more

1 Citations


Open accessPosted Content
Abstract: Face representation learning using datasets with massive number of identities requires appropriate training methods. Softmax-based approach, currently the state-of-the-art in face recognition, in its usual "full softmax" form is not suitable for datasets with millions of persons. Several methods, based on the "sampled softmax" approach, were proposed to remove this limitation. These methods, however, have a set of disadvantages. One of them is a problem of "prototype obsolescence": classifier weights (prototypes) of the rarely sampled classes, receive too scarce gradients and become outdated and detached from the current encoder state, resulting in an incorrect training signals. This problem is especially serious in ultra-large-scale datasets. In this paper, we propose a novel face representation learning model called Prototype Memory, which alleviates this problem and allows training on a dataset of any size. Prototype Memory consists of the limited-size memory module for storing recent class prototypes and employs a set of algorithms to update it in appropriate way. New class prototypes are generated on the fly using exemplar embeddings in the current mini-batch. These prototypes are enqueued to the memory and used in a role of classifier weights for usual softmax classification-based training. To prevent obsolescence and keep the memory in close connection with encoder, prototypes are regularly refreshed, and oldest ones are dequeued and disposed. Prototype Memory is computationally efficient and independent of dataset size. It can be used with various loss functions, hard example mining algorithms and encoder architectures. We prove the effectiveness of the proposed model by extensive experiments on popular face recognition benchmarks.

... read more

Topics: Softmax function (57%), Memory module (55%), Feature learning (52%) ... show more

1 Citations


Open accessProceedings ArticleDOI: 10.1109/ICCCNT51525.2021.9579712
06 Jul 2021-
Abstract: In this research paper, we are going to see the profound scientific use of computer technology applied in the fields of AI and Machine Learning primarily focused on Image Processing and Pattern recognition. Techniques such as ours are widely used to recognize real life objects including human faces etc. Thus, using such techniques, we can recognize a person from pictures. Using face recognition modules from python's huge collection of libraries, we are able to train the model to recognize people while wearing masks. Since when masks are worn, half of the facial features are lost, therefore developing a technique to recognize faces in such way is crucial. This specific technology of face detection is used in biometrics, video surveillance, etc. Therefore it's at utmost importance to increase the security as well as efficiency whilst making the recognition faster.

... read more

Topics: Face detection (63%), Facial recognition system (60%), Computer technology (55%) ... show more

References
  More

35 results found


Open accessProceedings ArticleDOI: 10.1109/CVPR.2016.90
Kaiming He1, Xiangyu Zhang1, Shaoqing Ren1, Jian Sun1Institutions (1)
27 Jun 2016-
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

... read more

Topics: Deep learning (53%), Residual (53%), Convolutional neural network (53%) ... show more

93,356 Citations


Open accessProceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
01 Jan 2015-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

... read more

49,857 Citations


Open accessProceedings ArticleDOI: 10.1109/CVPR.2015.7298682
07 Jun 2015-
Abstract: Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors.

... read more

Topics: Three-dimensional face recognition (73%), Face detection (63%), Object-class detection (62%) ... show more

8,289 Citations


Open access
01 Oct 2008-
Abstract: Most face databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, background, camera quality, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database, Labeled Faces in the Wild, is provided as an aid in studying the latter, unconstrained, recognition problem. The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life. The database exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background. In addition to describing the details of the database, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible. We provide baseline results, including results of a state of the art face recognition system combined with a face alignment system. To facilitate experimentation on the database, we provide several parallel databases, including an aligned version.

... read more

5,107 Citations


Open accessProceedings ArticleDOI: 10.5244/C.29.41
01 Jan 2015-
Abstract: The goal of this paper is face recognition – from either a single photograph or from a set of faces tracked in a video. Recent progress in this area has been due to two factors: (i) end to end learning for the task using a convolutional neural network (CNN), and (ii) the availability of very large scale training datasets. We make two contributions: first, we show how a very large scale dataset (2.6M images, over 2.6K people) can be assembled by a combination of automation and human in the loop, and discuss the trade off between data purity and time; second, we traverse through the complexities of deep network training and face recognition to present methods and procedures to achieve comparable state of the art results on the standard LFW and YTF face benchmarks.

... read more

4,347 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20216