scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract: The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
02 Feb 2017-Nature
TL;DR: This work demonstrates an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists, trained end-to-end from images directly, using only pixels and disease labels as inputs.
Abstract: Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images-two orders of magnitude larger than previous datasets-consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.

8,424 citations

Journal ArticleDOI
19 Oct 2017-Nature
TL;DR: An algorithm based solely on reinforcement learning is introduced, without human data, guidance or domain knowledge beyond game rules, that achieves superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.
Abstract: A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo. Starting from zero knowledge and without human data, AlphaGo Zero was able to teach itself to play Go and to develop novel strategies that provide new insights into the oldest of games. To beat world champions at the game of Go, the computer program AlphaGo has relied largely on supervised learning from millions of human expert moves. David Silver and colleagues have now produced a system called AlphaGo Zero, which is based purely on reinforcement learning and learns solely from self-play. Starting from random moves, it can reach superhuman level in just a couple of days of training and five million games of self-play, and can now beat all previous versions of AlphaGo. Because the machine independently discovers the same fundamental principles of the game that took humans millennia to conceptualize, the work suggests that such principles have some universal character, beyond human bias.

7,818 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This work combines existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and applies it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures.
Abstract: We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach – Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for ‘dog’ or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/ along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.

7,556 citations

Proceedings ArticleDOI
22 May 2017
TL;DR: In this paper, the authors demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability.
Abstract: Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x' that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.

6,528 citations

Journal ArticleDOI
TL;DR: The Places Database is described, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world, using the state-of-the-art Convolutional Neural Networks as baselines, that significantly outperform the previous approaches.
Abstract: The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems.

3,215 citations


Additional excerpts

  • ...6 million, and 30 million items, respectively [6]– [8]....

    [...]

References
More filters
Book ChapterDOI
29 May 2006
TL;DR: A new framework to combine tree search with Monte-Carlo evaluation, that does not separate between a min-max phase and a Monte- carlo phase is presented, that provides finegrained control of the tree growth, at the level of individual simulations, and allows efficient selectivity.
Abstract: A Monte-Carlo evaluation consists in estimating a position by averaging the outcome of several random continuations. The method can serve as an evaluation function at the leaves of a min-max tree. This paper presents a new framework to combine tree search with Monte-Carlo evaluation, that does not separate between a min-max phase and a Monte-Carlo phase. Instead of backing-up the min-max value close to the root, and the average value at some depth, a more general backup operator is defined that progressively changes from averaging to minmax as the number of simulations grows. This approach provides a finegrained control of the tree growth, at the level of individual simulations, and allows efficient selectivity. The resulting algorithm was implemented in a 9 × 9 Go-playing program, Crazy Stone, that won the 10th KGS computer-Go tournament.

1,273 citations

Journal ArticleDOI
24 Jan 2002
TL;DR: Deep Blue as discussed by the authors is the chess machine that defeated then-reigning World Chess Champion Garry Kasparov in a six-game match in 1997 and won the first World Chess Championship.
Abstract: Deep Blue is the chess machine that defeated then-reigning World Chess Champion Garry Kasparov in a six-game match in 1997. There were a number of factors that contributed to this success, including: a single-chip chess search engine, a massively parallel system with multiple levels of parallelism, a strong emphasis on search extensions, a complex evaluation function, and effective use of a Grandmaster game database. This paper describes the Deep Blue system, and gives some of the rationale that went into the design decision behind Deep Blue. Copyright 2001 Elsevier B.V.

1,037 citations

Journal ArticleDOI
TL;DR: The alpha-beta procedure for searching game trees is shown to be optimal in a certain sense, and bounds are obtained for its running time with various kinds of random data.

971 citations

Journal ArticleDOI
Gerald Tesauro1
TL;DR: The latest version of TD-Gammon is now estimated to play at a strong master level that is extremely close to the world's best human players.
Abstract: TD-Gammon is a neural network that is able to teach itself to play backgammon solely by playing against itself and learning from the results, based on the TD(») reinforcement learning algorithm (Sutton 1988). Despite starting from random initial weights (and hence random initial strategy), TD-Gammon achieves a surprisingly strong level of play. With zero knowledge built in at the start of learning (i.e., given only a "raw" description of the board state), the network learns to play at a strong intermediate level. Furthermore, when a set of hand-crafted features is added to the network's input representation, the result is a truly staggering level of performance: the latest version of TD-Gammon is now estimated to play at a strong master level that is extremely close to the world's best human players.

852 citations

Journal ArticleDOI
A. L. Samuel1
TL;DR: Full use is made of the so called "alpha-beta" pruning and several forms of forward pruning to restrict the spread of the move tree and to permit the program to look ahead to a much greater depth than it otherwise could do.
Abstract: A new signature tablet echnique is described together with an improved book learning procedure which is thougthot be much superior to the linear polynomial method described earlier. Full use is made of the so called "alpha-beta" pruning and several forms of forward pruning to restrict the spread of the move tree and to permit the programt o look ahead to a much greater depth than it otherwise could do. While still unable to outplay checker masters, the program's playing ability has been greatly improved.

591 citations