scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Materials selection guidelines for low thermal conductivity thermal barrier coatings

30 Jan 2003-Surface & Coatings Technology (Elsevier)-Vol. 163, pp 67-74
TL;DR: In this paper, the minimum thermal conductivity of yttria-stabilized zirconia for high-temperature barrier coatings was investigated and a materials parameter was developed that can be used to identify candidate alternatives for high temperature applications.
Abstract: Materials selection guidelines are desirable in identifying and developing alternative materials for higher-temperature capability thermal barrier coatings. Some relate to identifying candidate materials that exhibit particularly low values of thermal conductivity at high temperatures and others relate to thermodynamic stability in contact with the thermally grown oxides formed on bond-coat alloys and superalloys. By using existing theories of the minimum thermal conductivity, a materials parameter is developed that can be used to identify candidate alternatives to yttria-stabilized zirconia for high-temperature applications.
Citations
More filters
Journal ArticleDOI
17 Apr 2014-Nature
TL;DR: An unprecedented ZT of 2.6 ± 0.3 at 923 K is reported in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell, which highlights alternative strategies to nanostructuring for achieving high thermoelectric performance.
Abstract: The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion Enhancements above the generally high threshold value of 25 have important implications for commercial deployment, especially for compounds free of Pb and Te Here we report an unprecedented ZT of 26 ± 03 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell This material also shows a high ZT of 23 ± 03 along the c axis but a significantly reduced ZT of 08 ± 02 along the a axis We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Gruneisen parameters, which reflect the anharmonic and anisotropic bonding We attribute the exceptionally low lattice thermal conductivity (023 ± 003 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance

3,823 citations

Book
31 Jul 2008
TL;DR: In this paper, the physical metallurgy of nickel and its alloys is discussed and single crystal superalloys for blade applications for turbine disc applications are discussed. And the role of coatings is discussed.
Abstract: 1. Introduction 2. The physical metallurgy of nickel and its alloys 3. Single crystal superalloys for blade applications 4. Superalloys for turbine disc applications 5. Environmental degradation: the role of coatings 6. Summary and future trends.

3,067 citations

Journal ArticleDOI
TL;DR: This review describes the recent advances in designing high-performance bulk thermoelectric materials and highlights the decoupling of the electron and phonon transport through coherent interface, matrix/precipitate electronic bands alignment, and compositionally alloyed nanostructures.
Abstract: There has been a renaissance of interest in exploring highly efficient thermoelectric materials as a possible route to address the worldwide energy generation, utilization, and management. This review describes the recent advances in designing high-performance bulk thermoelectric materials. We begin with the fundamental stratagem of achieving the greatest thermoelectric figure of merit ZT of a given material by carrier concentration engineering, including Fermi level regulation and optimum carrier density stabilization. We proceed to discuss ways of maximizing ZT at a constant doping level, such as increase of band degeneracy (crystal structure symmetry, band convergence), enhancement of band effective mass (resonant levels, band flattening), improvement of carrier mobility (modulation doping, texturing), and decrease of lattice thermal conductivity (synergistic alloying, second-phase nanostructuring, mesostructuring, and all-length-scale hierarchical architectures). We then highlight the decoupling of th...

1,469 citations

Journal ArticleDOI
TL;DR: In this article, the materials issues involved in the development of present thermal barrier coatings and the advances necessary for the next generation, higher temperature capability coatings are described and discussed.
Abstract: ▪ Abstract The emphasis in this short review is to describe the materials issues involved in the development of present thermal barrier coatings and the advances necessary for the next generation, higher temperature capability coatings.

1,044 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new thermal barrier coatings (TBCs) materials.

890 citations

References
More filters
Journal ArticleDOI

23,110 citations

Book
01 Jan 1953
TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

21,954 citations

Journal ArticleDOI
TL;DR: These measurements support the claim that the lattice vibrations of these disordered crystals are essentially the same as those of an amorphous solid, based on a model originally due to Einstein.
Abstract: Measurements of the thermal conductivity above 30 K of mixed crystals with controlled disorder, (KBr${)}_{1\mathrm{\ensuremath{-}}\mathit{x}}$(KCN${)}_{\mathit{x}}$, (NaCl${)}_{1\mathrm{\ensuremath{-}}\mathit{x}}$, (NaCn${)}_{\mathit{x}}$ ${\mathrm{Zr}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{Y}}_{\mathit{x}}$${\mathrm{O}}_{2\mathrm{\ensuremath{-}}\mathit{x}/2}$, and ${\mathrm{Ba}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{La}}_{\mathit{x}}$${\mathrm{F}}_{2+\mathit{x}}$, support the idea of a lower limit to the thermal conductivity of disordered solids. In each case, as x is increased, the data approach the calculated minimum conductivity based on a model originally due to Einstein. These measurements support the claim that the lattice vibrations of these disordered crystals are essentially the same as those of an amorphous solid.

1,947 citations