scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education

TL;DR: The details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture, are presented, which are used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits.
Abstract: MATPOWER is an open-source Matlab-based power system simulation package that provides a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward researchers, educators, and students. The OPF architecture is designed to be extensible, making it easy to add user-defined variables, costs, and constraints to the standard OPF problem. This paper presents the details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture. This structure is used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits. Simulation results are presented for a number of test cases comparing the performance of several available OPF solvers and demonstrating MATPOWER's ability to solve large-scale AC and DC OPF problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an efficient algorithm inspired by the ambiguity group theory was proposed to identify the locations of line outages with limited PMUs using 14-, 57-, 118-, 300-, and 2383-bus systems.
Abstract: The efficient location identification of multiple line outages is critical to not only cascading failure elimination but also repair cost reduction. Most of existing methods, however, fail to handle location identification well. This failure typically occurs because the methods cannot overcome two challenges: the very limited number of phasor measurement units (PMUs) and the high computational complexity. This paper presents an efficient algorithm inspired by the ambiguity group theory to identify the locations of line outages with limited PMUs. Using 14-, 57-, 118-, 300-, and 2383-bus systems, our experimental study demonstrates that the proposed technique successfully identifies the most likely multiple line outages while attaining a 500 $\times$ speedup when compared to the method of exhaustive search.

42 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...The last is from the Polish Power System provided by MATPOWER “case2383wp” file....

    [...]

  • ...The software toolbox MATPOWER [27] is used to generate both pertinent AC power flow and PMUs measurements....

    [...]

  • ...Consider the six-bus power system , provided by the MATPOWER “case6ww” file [27], illustrated in Fig....

    [...]

Journal ArticleDOI
TL;DR: A multiobjective framework for optimal placement and parameters setting of a unified power flow controller (UPFC) considering system predictability is proposed and a multiobjectives particle swarm optimization algorithm is implemented and the results of two algorithms are compared with each other.
Abstract: Uncertainty management is a challenging task in decision making of the operators of the power systems. Prediction of the system state is vital for the operation of a system with stochastic behavior especially in a power system with a significant amount of renewable energies such as wind power. Predictable power systems are in more interest of operators, of course. This paper proposes a multiobjective framework for optimal placement and parameters setting of a unified power flow controller (UPFC) considering system predictability. The well-known multiobjective nondominated sorting genetic algorithm is implemented to handle various objective functions such as active power losses and predictability of system in the presence of operational constraints and uncertainties. The point estimate method is used for modeling probabilistic nature of the wind power. Using the proposed method, statistical information of voltage magnitude and apparent power of converters of UPFCs can be obtained, which are very useful in making decision on the sizing of UPFCs. Comprehensive discussions are provided using the simulations on the IEEE 57-bus test system. Also, in order to validate the obtained results, a multiobjective particle swarm optimization algorithm is implemented and the results of two algorithms are compared with each other.

42 citations

Posted Content
TL;DR: This paper proposes a new cyber-physical attack strategy where the transmission line is first physically disconnected, the line-outage event is masked to mislead the control center into detecting this as an obvious line outage at a different position in the local area of the power system.
Abstract: Malicious attacks in the power system can eventually result in a large-scale cascade failure if not attended on time. These attacks, which are traditionally classified into \emph{physical} and \emph{cyber attacks}, can be avoided by using the latest and advanced detection mechanisms. However, a new threat called \emph{cyber-physical attacks} which jointly target both the physical and cyber layers of the system to interfere the operations of the power grid is more malicious as compared with the traditional attacks. In this paper, we propose a new cyber-physical attack strategy where the transmission line is first physically disconnected, and then the line-outage event is masked, such that the control center is misled into detecting as an obvious line outage at a different position in the local area of the power system. Therefore, the topology information in the control center is interfered by our attack. We also propose a novel procedure for selecting vulnerable lines, and analyze the observability of our proposed framework. Our proposed method can effectively and continuously deceive the control center into detecting fake line-outage positions, and thereby increase the chance of cascade failure because the attention is given to the fake outage. The simulation results validate the efficiency of our proposed attack strategy.

42 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...We use the software toolbox MATPOWER [36] to run the power flow and provide the initial information of the system....

    [...]

  • ...The calculated losses are based on ZlCl as shown in (16f), and the real losses are taken from MATPOWER according to the modified voltage and current system topology....

    [...]

Journal ArticleDOI
TL;DR: A stochastic gas-power network constrained unit commitment model considering both combined-cycle units and gas network is established and an adaptive dynamic programming (ADP) to prevent the curse of dimensionality is proposed.
Abstract: Due to the fast response capabilities, combined-cycle units could provide valuable flexibilities to cope with uncertainties from the renewable energy resources. However, combined-cycle units intensify the coupling between power and gas networks, so operational constraints of the two networks should be explicitly considered simultaneously. Indeed, neglecting the impact of any network may lead to infeasible solutions that will violate physical operational constraints. Compared with the previous stochastic unit commitment model with only combined-cycle units, this paper establishes a stochastic gas-power network constrained unit commitment model considering both combined-cycle units and gas network. Furthermore, an adaptive dynamic programming (ADP) to prevent the curse of dimensionality is proposed. Numerical results verify the effectiveness of the proposed model.

42 citations

Posted Content
TL;DR: In this paper, a regularized maximum likelihood estimator (MLE) is developed to recover the grid Laplacian from the locational marginal prices (LMPs) under a linear DC model, where the LMPs correspond to the Lagrange multipliers of the linear program involved.
Abstract: The potential of recovering the topology of a grid using solely publicly available market data is explored here. In contemporary whole-sale electricity markets, real-time prices are typically determined by solving the network-constrained economic dispatch problem. Under a linear DC model, locational marginal prices (LMPs) correspond to the Lagrange multipliers of the linear program involved. The interesting observation here is that the matrix of spatiotemporally varying LMPs exhibits the following property: Once premultiplied by the weighted grid Laplacian, it yields a low-rank and sparse matrix. Leveraging this rich structure, a regularized maximum likelihood estimator (MLE) is developed to recover the grid Laplacian from the LMPs. The convex optimization problem formulated includes low rank- and sparsity-promoting regularizers, and it is solved using a scalable algorithm. Numerical tests on prices generated for the IEEE 14-bus benchmark provide encouraging topology recovery results.

42 citations

References
More filters
Book
01 Jan 1984
TL;DR: In this paper, the authors present a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems, including characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security.
Abstract: Topics considered include characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security. This book is a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems. Material used was generated in the post-1966 period. Many (if not most) of the chapter problems require a digital computer. A background in steady-state power circuit analysis is required.

6,344 citations

Book
01 Jan 1977

1,937 citations

Journal ArticleDOI
TL;DR: This paper describes a simple, very reliable and extremely fast load-flow solution method that is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities.
Abstract: This paper describes a simple, very reliable and extremely fast load-flow solution method with a wide range of practical application. It is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities. The method is a development on other recent work employing the MW-?/ MVAR-V decoupling principle, and its precise algorithmic form has been determined by extensive numerical studies. The paper gives details of the method's performance on a series of practical problems of up to 1080 buses. A solution to within 0.01 MW/MVAR maximum bus mismatches is normally obtained in 4 to 7 iterations, each iteration being equal in speed to 1? Gauss-Seidel iterations or 1/5th of a Newton iteration. Correlations of general interest between the power-mismatch convergence criterion and actual solution accuracy are obtained.

1,447 citations

Journal ArticleDOI
TL;DR: The ac power flow problem can be solved efficiently by Newton's method because only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method are required for an exact solution.
Abstract: The ac power flow problem can be solved efficiently by Newton's method. Only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method, are required for an exact solution. Problem dependent memory and time requirements vary approximately in direct proportion to problem size. Problems of 500 to 1000 nodes can be solved on computers with 32K core memory. The method, introduced in 1961, has been made practical by optimally ordered Gaussian elimination and special programming techniques. Equations, programming details, and examples of solutions of large problems are given.

1,112 citations


"MATPOWER: Steady-State Operations, ..." refers methods in this paper

  • ...The default solver is based on a standard Newton’s method [7] using a polar form and a full Jacobian updated at each iteration....

    [...]

Journal ArticleDOI
TL;DR: Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.
Abstract: This paper describes the Power System Analysis Toolbox (PSAT), an open source Matlab and GNU/Octave-based software package for analysis and design of small to medium size electric power systems. PSAT includes power flow, continuation power flow, optimal power flow, small-signal stability analysis, and time-domain simulation, as well as several static and dynamic models, including nonconventional loads, synchronous and asynchronous machines, regulators, and FACTS. PSAT is also provided with a complete set of user-friendly graphical interfaces and a Simulink-based editor of one-line network diagrams. Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.

890 citations


"MATPOWER: Steady-State Operations, ..." refers background or methods in this paper

  • ...This at least partially explains the lack of a graphical user interface used by some related tools such as PSAT [5]....

    [...]

  • ...A nice summary of their features is presented in [5]....

    [...]