scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education

TL;DR: The details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture, are presented, which are used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits.
Abstract: MATPOWER is an open-source Matlab-based power system simulation package that provides a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward researchers, educators, and students. The OPF architecture is designed to be extensible, making it easy to add user-defined variables, costs, and constraints to the standard OPF problem. This paper presents the details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture. This structure is used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits. Simulation results are presented for a number of test cases comparing the performance of several available OPF solvers and demonstrating MATPOWER's ability to solve large-scale AC and DC OPF problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper focuses on quantifying the impact of PMU uncertainty on power line outage detection and identification, in which a limited number of PMUs installed at a subset of buses are utilized to detect and identify the line outage events.
Abstract: Phasor measurement unit (PMU) technology pro- videsan effective tooltoenhance the wide-areamonitoring systems (WAMSs) in power grids. Although extensive studies have been conducted to develop several PMU applications in power systems (e.g., state estimation, oscillation detection and control, voltage stability analysis, and line outage detection), the uncertainty aspects of PMUs have not been adequately investigated. This paper focuses on quantifying the impact of PMU uncertainty on power line outage detection and identification, in which a limited number of PMUs installed at a subset of buses are utilized to detect and identify the line outage events. Specifically, the line outage detection problem is formulated as a multi-hypothesis test, and a general Bayesian criterion is used for the detection procedure, in which the PMU uncertainty is analytically charac- terized. We further apply the minimum detection error criterion for the multi-hypothesis test and derive the expected detection error probability in terms of PMU uncertainty. The framework proposed provides fundamental guidance for quantifying the effects of PMU uncertainty on power line outage detection. Case studies are provided to validate our analysis and show how PMU uncertainty influences power line outage detection.

30 citations

Journal ArticleDOI
TL;DR: The need for a transportation electrification test case analogous to those used ubiquitously in the power systems engineering field is argued; aptly called Symmetrica; and several potential research areas where the test case may be applied are concluded.
Abstract: In recent years, transportation electrification has emerged as a trend to support energy efficiency and CO2 emissions reduction targets. The true success, however, of this trend depends on the successful integration of electric vehicles into the infrastructure systems that support them. In effect, electric vehicles and their supporting charging infrastructure couple the transportation and electrical power systems into a nexus. In the absence of fully deployed large scale electrified transportation systems, this paper argues the need for a transportation electrification test case analogous to those used ubiquitously in the power systems engineering field. It then presents such a test case; aptly called Symmetrica. It consists of a multi-modal electrified transportation system topology, an electric power topology, and activity-based use case data that spans transportation and charging. The paper concludes with several potential research areas where the test case may be applied.

30 citations


Cites background from "MATPOWER: Steady-State Operations, ..."

  • ...…several publicly accessible internetbased test case repositories have emerged (Farid 2015b; IEEE PES Distribution System Analysis Subcommittee’s Distribution Test Feeder Working Group 2015; Kavasseri and Ababei 2015; University of Washington Electrical Engineering 2015; Zimmerman et al. 2011)....

    [...]

Journal ArticleDOI
TL;DR: The developed approach was tested using the IEEE 118-Bus test system and the obtained results demonstrate that the novel strategy can enable the utilization of the AC optimal power flow (OPF) in a faster and reliable way when compared to the standard and widespread DC-OPF model.

30 citations

Journal ArticleDOI
01 Sep 2015
TL;DR: In this article, the authors describe the design of an optimal buffer, the use of the phasor measurements from that buffer, and the analysis of the impact on state estimation with the inclusion of buffered phasors measurements.
Abstract: State estimation (SE) is a critical must run successful unit within energy management system software. This is dictated by the high reliability requirements for system security and control and the need to represent the closest real-time model for market operations. There has been considerable emphasis in bringing phasor measurements into SE to improve performance. However, there are many practical problems in incorporating phasor measurements into SE. The higher reporting rates of phasor measurement units compared with supervisory control and data acquisition devices is one such problem. The disparity of the reporting rates raises the question of whether buffering the phasor measurements helps to improve the state estimates. This buffer is a subset of the entire phasor measurements set relevant to every particular instant at which SE is conducted. This paper describes the design of an optimal buffer, the use of the phasor measurements from that buffer, and the analysis of the impact on SE with the inclusion of these buffered phasor measurements. This hybrid SE, used for analysis purposes, is created from contemporary real-time system data and measurements from a utility in southwest USA.

30 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...MATPOWER, a software package based on MATLAB, is capable of solving power flow, optimal power flow, and SE [14]....

    [...]

Journal ArticleDOI
01 Nov 2018-Energy
TL;DR: The SCUC problem is solved by a scenario-based method incorporated with the Benders decomposition technique to mitigate congestions from power lines and provide feasibility and optimality of the solution in all the scenarios.

30 citations

References
More filters
Book
01 Jan 1984
TL;DR: In this paper, the authors present a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems, including characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security.
Abstract: Topics considered include characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security. This book is a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems. Material used was generated in the post-1966 period. Many (if not most) of the chapter problems require a digital computer. A background in steady-state power circuit analysis is required.

6,344 citations

Book
01 Jan 1977

1,937 citations

Journal ArticleDOI
TL;DR: This paper describes a simple, very reliable and extremely fast load-flow solution method that is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities.
Abstract: This paper describes a simple, very reliable and extremely fast load-flow solution method with a wide range of practical application. It is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities. The method is a development on other recent work employing the MW-?/ MVAR-V decoupling principle, and its precise algorithmic form has been determined by extensive numerical studies. The paper gives details of the method's performance on a series of practical problems of up to 1080 buses. A solution to within 0.01 MW/MVAR maximum bus mismatches is normally obtained in 4 to 7 iterations, each iteration being equal in speed to 1? Gauss-Seidel iterations or 1/5th of a Newton iteration. Correlations of general interest between the power-mismatch convergence criterion and actual solution accuracy are obtained.

1,447 citations

Journal ArticleDOI
TL;DR: The ac power flow problem can be solved efficiently by Newton's method because only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method are required for an exact solution.
Abstract: The ac power flow problem can be solved efficiently by Newton's method. Only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method, are required for an exact solution. Problem dependent memory and time requirements vary approximately in direct proportion to problem size. Problems of 500 to 1000 nodes can be solved on computers with 32K core memory. The method, introduced in 1961, has been made practical by optimally ordered Gaussian elimination and special programming techniques. Equations, programming details, and examples of solutions of large problems are given.

1,112 citations


"MATPOWER: Steady-State Operations, ..." refers methods in this paper

  • ...The default solver is based on a standard Newton’s method [7] using a polar form and a full Jacobian updated at each iteration....

    [...]

Journal ArticleDOI
TL;DR: Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.
Abstract: This paper describes the Power System Analysis Toolbox (PSAT), an open source Matlab and GNU/Octave-based software package for analysis and design of small to medium size electric power systems. PSAT includes power flow, continuation power flow, optimal power flow, small-signal stability analysis, and time-domain simulation, as well as several static and dynamic models, including nonconventional loads, synchronous and asynchronous machines, regulators, and FACTS. PSAT is also provided with a complete set of user-friendly graphical interfaces and a Simulink-based editor of one-line network diagrams. Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.

890 citations


"MATPOWER: Steady-State Operations, ..." refers background or methods in this paper

  • ...This at least partially explains the lack of a graphical user interface used by some related tools such as PSAT [5]....

    [...]

  • ...A nice summary of their features is presented in [5]....

    [...]