scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education

TL;DR: The details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture, are presented, which are used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits.
Abstract: MATPOWER is an open-source Matlab-based power system simulation package that provides a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward researchers, educators, and students. The OPF architecture is designed to be extensible, making it easy to add user-defined variables, costs, and constraints to the standard OPF problem. This paper presents the details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture. This structure is used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits. Simulation results are presented for a number of test cases comparing the performance of several available OPF solvers and demonstrating MATPOWER's ability to solve large-scale AC and DC OPF problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The results indicate that there is a noticeable impact from commercial buildings with price-responsive demand on the electricity market, and this impact differs with different scales of DR participation under different levels of market competitions.
Abstract: With the development of power system deregulation and smart metering technologies, price-based demand response (DR) becomes an alternative solution to improving power system reliability and efficiency by adjusting the load profile. In this paper, we simulate an electricity market with DR from different types of commercial buildings by using agent-based modeling and simulation (ABMS) techniques. We focus on the consumption behavior of commercial buildings with different levels of DR penetration in different market structures. The results indicate that there is a noticeable impact from commercial buildings with price-responsive demand on the electricity market, and this impact differs with different scales of DR participation under different levels of market competitions.

185 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...Before the beginning of Day , the ISO closes the market for day and clears the market by using a standard bid-based DC optimal power flow formulation [38]....

    [...]

Journal ArticleDOI
TL;DR: MFO algorithm is realized in ORPD problem to investigate the best combination of control variables including generators voltage, transformers tap setting as well as reactive compensators sizing to achieve minimum total power loss and minimum voltage deviation.

184 citations

Journal ArticleDOI
TL;DR: In this article, the main OPF approaches are compared in terms of their objective functions, constraints, and methodologies, and some basic challenges arising from the new OPF methodologies in smart grids are addressed.
Abstract: The term smart grid refers to a modernization of the electrical network consisting in the integration of various technologies such as dispersed generation, dispatchable loads, communication systems and storage devices which operates in grid-connected and islanded modes. As a result, traditional optimization techniques in new power systems have been seriously influenced during the last decade. One of the most important technical and economical tools in this regard is the Optimal Power Flow (OPF). As a fundamental optimization tool in the operation and planning fields, OPF has an undeniable role in the power system. This paper reviews and compares the OPF approaches mainly related to smart distribution grids. In this work, the main OPF approaches are compared in terms of their objective functions, constraints, and methodologies. Furthermore, computational performances, case study networks and the publication date of these methods are reported. Finally, some basic challenges arising from the new OPF methodologies in smart grids are addressed.

183 citations

Journal ArticleDOI
TL;DR: This work derives a closed-form condition under which a power network is safe from voltage collapse, and extensively test its predictions on large-scale systems, highlighting how the condition can be leveraged to increase grid stability margins.
Abstract: A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins.

182 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...For each realization, we numerically calculate using MATPOWER [51] the exact solution (✓, V...

    [...]

  • ...All studies were implemented using the standard power flow solution techniques from the MATPOWER package39....

    [...]

  • ...To generate a large sample of randomized test cases, we modify the nominal simulation parameters [51, 52] as follows....

    [...]

Journal ArticleDOI
TL;DR: A stochastic framework for day-ahead scheduling of microgrid energy storage systems in the context of multi-objective (MO) optimization is presented and the obtained results demonstrate the applicability and efficiency of this framework in dealing with conflicting requirements of micro grid security and economic operation.
Abstract: This paper presents a stochastic framework for day-ahead scheduling of microgrid energy storage systems in the context of multi-objective (MO) optimization. Operation cost of microgrid in normal conditions and load curtailment index in case of unscheduled islanding events (initiated by disturbances in the main grid) are chosen as main criteria of the proposed scheme. In practice, duration of disconnection from the upstream network is unknown in unscheduled islanding incidents and cannot be predicted with certainty. To properly handle the uncertainties associated with time and duration of such events as well as microgrid load and renewable power generation, stochastic models are involved in the MO scheduling framework and they are formulated as mixed integer linear programming problems. The non-dominated sorting genetic algorithm II is employed to effectively cope with the MO optimization problem and a fuzzy decision making approach is employed for appropriate representation of microgrid operator’s preferences in compromising between the two objectives. The proposed scheme is implemented on a test microgrid and the obtained results demonstrate the applicability and efficiency of this framework in dealing with conflicting requirements of microgrid security and economic operation.

181 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...As a note, the MATPOWER analysis tool is used for conducting the AC power flow and OPF in this paper [28]....

    [...]

References
More filters
Book
01 Jan 1984
TL;DR: In this paper, the authors present a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems, including characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security.
Abstract: Topics considered include characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security. This book is a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems. Material used was generated in the post-1966 period. Many (if not most) of the chapter problems require a digital computer. A background in steady-state power circuit analysis is required.

6,344 citations

Book
01 Jan 1977

1,937 citations

Journal ArticleDOI
TL;DR: This paper describes a simple, very reliable and extremely fast load-flow solution method that is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities.
Abstract: This paper describes a simple, very reliable and extremely fast load-flow solution method with a wide range of practical application. It is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities. The method is a development on other recent work employing the MW-?/ MVAR-V decoupling principle, and its precise algorithmic form has been determined by extensive numerical studies. The paper gives details of the method's performance on a series of practical problems of up to 1080 buses. A solution to within 0.01 MW/MVAR maximum bus mismatches is normally obtained in 4 to 7 iterations, each iteration being equal in speed to 1? Gauss-Seidel iterations or 1/5th of a Newton iteration. Correlations of general interest between the power-mismatch convergence criterion and actual solution accuracy are obtained.

1,447 citations

Journal ArticleDOI
TL;DR: The ac power flow problem can be solved efficiently by Newton's method because only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method are required for an exact solution.
Abstract: The ac power flow problem can be solved efficiently by Newton's method. Only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method, are required for an exact solution. Problem dependent memory and time requirements vary approximately in direct proportion to problem size. Problems of 500 to 1000 nodes can be solved on computers with 32K core memory. The method, introduced in 1961, has been made practical by optimally ordered Gaussian elimination and special programming techniques. Equations, programming details, and examples of solutions of large problems are given.

1,112 citations


"MATPOWER: Steady-State Operations, ..." refers methods in this paper

  • ...The default solver is based on a standard Newton’s method [7] using a polar form and a full Jacobian updated at each iteration....

    [...]

Journal ArticleDOI
TL;DR: Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.
Abstract: This paper describes the Power System Analysis Toolbox (PSAT), an open source Matlab and GNU/Octave-based software package for analysis and design of small to medium size electric power systems. PSAT includes power flow, continuation power flow, optimal power flow, small-signal stability analysis, and time-domain simulation, as well as several static and dynamic models, including nonconventional loads, synchronous and asynchronous machines, regulators, and FACTS. PSAT is also provided with a complete set of user-friendly graphical interfaces and a Simulink-based editor of one-line network diagrams. Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.

890 citations


"MATPOWER: Steady-State Operations, ..." refers background or methods in this paper

  • ...This at least partially explains the lack of a graphical user interface used by some related tools such as PSAT [5]....

    [...]

  • ...A nice summary of their features is presented in [5]....

    [...]