scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education

TL;DR: The details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture, are presented, which are used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits.
Abstract: MATPOWER is an open-source Matlab-based power system simulation package that provides a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward researchers, educators, and students. The OPF architecture is designed to be extensible, making it easy to add user-defined variables, costs, and constraints to the standard OPF problem. This paper presents the details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture. This structure is used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits. Simulation results are presented for a number of test cases comparing the performance of several available OPF solvers and demonstrating MATPOWER's ability to solve large-scale AC and DC OPF problems.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2014

74 citations


Cites result from "MATPOWER: Steady-State Operations, ..."

  • ...The simulation results following from the unit commitment model with DC power flow are compared with the optimal power flow results following from MATPOWER [21]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a robust probabilistic controller tuning method is presented to improve the damping of critical system modes through the modulation of active power injected by a voltage-source converter-based multiterminal high-voltage direct current (VSC-MTDC) grid.
Abstract: This paper presents a robust probabilistic controller tuning method to improve the damping of critical system modes through the modulation of active power injected by a voltage-source converter-based multiterminal high-voltage direct current (VSC-MTDC) grid. This methodology first establishes the probabilistic locations of the critical modes based on the known variation in power system operating conditions. Following this, the modal linear quadratic Gaussian (MLQG) controller structure is tuned for a set of probabilistic values of critical eigenvalues. The controller's performance following small disturbances in the network for wide-ranging operating conditions is compared with the conventionally tuned MLQG controller designed for the nominal system operating point. The probabilistic collocation method is shown to facilitate robust probabilistic tuning without the need for large numbers of full system linearizations. The test system used incorporates a large wind farm with variable power output connected to the meshed ac network through the VSC-MTDC grid.

74 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...System analysis and simulations are all performed within the MATLAB/Simulink environment making use of modified MATPOWER [14] functions to perform initial load flows....

    [...]

Journal ArticleDOI
TL;DR: A novel consensus filter based dynamic state estimation algorithm with its convergence analysis for modern power systems and the developed approach is effective as it takes only 0.00004 seconds to properly estimate the system states and does not need to transmit the remote sensing signals to the central estimator.
Abstract: The distribution power subsystems are usually interconnected to each other, so the design of the interconnected optimal filtering algorithm for distributed state estimation is a challenging task. Driven by this motivation, this paper proposes a novel consensus filter based dynamic state estimation algorithm with its convergence analysis for modern power systems. The novelty of the scheme is that the algorithm is designed based on the mean squared error and semidefinite programming approaches. Specifically, the optimal local gain is computed after minimizing the mean squared error between the true and estimated states. The consensus gain is determined by a convex optimization process with a given suboptimal local gain. Furthermore, the convergence of the proposed scheme is analyzed after stacking all the estimation error dynamics. The Laplacian operator is used to represent the interconnected filter structure as a compact error dynamic for deriving the convergence condition of the algorithm. The developed approach is verified by using the renewable microgrid. It shows that the distributed scheme being explored is effective as it takes only 0.00004 seconds to properly estimate the system states and does not need to transmit the remote sensing signals to the central estimator.

74 citations


Cites background from "MATPOWER: Steady-State Operations, ..."

  • ...The simulation parameters of the IEEE 57-bus system can be found in [37]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, statistical machine learning theories are proposed to quickly solve the optimal planning for capacitors by comparing the method with the scenario reduction algorithm and the Monte Carlo method in a 33-bus distribution system.
Abstract: Distributed generation and reactive power resource allocation will affect the economy and security of distribution networks. Deterministic scenario planning cannot solve the problem of network uncertainties, which are introduced by intermittent renewable generators and a variable demand for electricity. However, stochastic programming becomes a problem of great complexity when there is a large number of scenarios to be analyzed and when the computational burden has an adverse effect on the programming solution. In this paper, statistical machine learning theories are proposed to quickly solve the optimal planning for capacitors. Various technologies are used: Markov chains and copula functions are formulated to capture the variability and correlation of weather; consumption behavior probability is involved in the weather-sensitive load model; nearest neighbor theory and nonnegative matrix decomposition are combined to reduce the dimensions and scenario scale of stochastic variables; the stochastic response surface is used to calculate the probabilistic power flow; and probabilistic inequality theory is introduced to directly estimate the objective and constraint functions of the stochastic programming model. The effectiveness and efficiency of the proposed method are verified by comparing the method with the scenario reduction algorithm and the Monte Carlo method in a 33-bus distribution system.

74 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...Because case33bw from MATPOWER, which is a free, open-source MATLAB-language package of M-files [27], is selected as the simulation object of this article, it is assumed that each HVAC load is connected to a PQ node and that there are ten HVAC units at each PQ bus....

    [...]

Journal ArticleDOI
TL;DR: A nested logit model is employed to analyze the charging preference of the individual consumer and predict the aggregated charging demand at the charging stations and it is shown that the charging station placement is highly consistent with the heatmap of the traffic flow.
Abstract: This paper studies the problem of multi-stage placement of electric vehicle (EV) charging stations with incremental EV penetration rates. A nested logit model is employed to analyze the charging preference of the individual consumer (EV owner), and predict the aggregated charging demand at the charging stations. The EV charging industry is modeled as an oligopoly where the entire market is dominated by a few charging service providers (oligopolists). At the beginning of each planning stage, an optimal placement policy for each service provider is obtained through analyzing strategic interactions in a Bayesian game. To derive the optimal placement policy, we consider both the transportation network graph and the electric power network graph. A simulation software --- The EV Virtual City 1.0 --- is developed using Java to investigate the interactions among the consumers (EV owner), the transportation network graph, the electric power network graph, and the charging stations. Through a series of experiments using the geographic and demographic data from the city of San Pedro District of Los Angeles, we show that the charging station placement is highly consistent with the heatmap of the traffic flow. In addition, we observe a spatial economic phenomenon that service providers prefer clustering instead of separation in the EV charging market.

74 citations


Cites methods from "MATPOWER: Steady-State Operations, ..."

  • ...For each charging station placement policy, we used MATPOWER [33] to calculate the LMP of each bus and the...

    [...]

  • ...For each charging station placement policy, we used MATPOWER [33] to calculate the LMP of each bus and the output power of each generator with and without EV charging....

    [...]

References
More filters
Book
01 Jan 1984
TL;DR: In this paper, the authors present a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems, including characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security.
Abstract: Topics considered include characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security. This book is a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems. Material used was generated in the post-1966 period. Many (if not most) of the chapter problems require a digital computer. A background in steady-state power circuit analysis is required.

6,344 citations

Book
01 Jan 1977

1,937 citations

Journal ArticleDOI
TL;DR: This paper describes a simple, very reliable and extremely fast load-flow solution method that is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities.
Abstract: This paper describes a simple, very reliable and extremely fast load-flow solution method with a wide range of practical application. It is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities. The method is a development on other recent work employing the MW-?/ MVAR-V decoupling principle, and its precise algorithmic form has been determined by extensive numerical studies. The paper gives details of the method's performance on a series of practical problems of up to 1080 buses. A solution to within 0.01 MW/MVAR maximum bus mismatches is normally obtained in 4 to 7 iterations, each iteration being equal in speed to 1? Gauss-Seidel iterations or 1/5th of a Newton iteration. Correlations of general interest between the power-mismatch convergence criterion and actual solution accuracy are obtained.

1,447 citations

Journal ArticleDOI
TL;DR: The ac power flow problem can be solved efficiently by Newton's method because only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method are required for an exact solution.
Abstract: The ac power flow problem can be solved efficiently by Newton's method. Only five iterations, each equivalent to about seven of the widely used Gauss-Seidel method, are required for an exact solution. Problem dependent memory and time requirements vary approximately in direct proportion to problem size. Problems of 500 to 1000 nodes can be solved on computers with 32K core memory. The method, introduced in 1961, has been made practical by optimally ordered Gaussian elimination and special programming techniques. Equations, programming details, and examples of solutions of large problems are given.

1,112 citations


"MATPOWER: Steady-State Operations, ..." refers methods in this paper

  • ...The default solver is based on a standard Newton’s method [7] using a polar form and a full Jacobian updated at each iteration....

    [...]

Journal ArticleDOI
TL;DR: Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.
Abstract: This paper describes the Power System Analysis Toolbox (PSAT), an open source Matlab and GNU/Octave-based software package for analysis and design of small to medium size electric power systems. PSAT includes power flow, continuation power flow, optimal power flow, small-signal stability analysis, and time-domain simulation, as well as several static and dynamic models, including nonconventional loads, synchronous and asynchronous machines, regulators, and FACTS. PSAT is also provided with a complete set of user-friendly graphical interfaces and a Simulink-based editor of one-line network diagrams. Basic features, algorithms, and a variety of case studies are presented in this paper to illustrate the capabilities of the presented tool and its suitability for educational and research purposes.

890 citations


"MATPOWER: Steady-State Operations, ..." refers background or methods in this paper

  • ...This at least partially explains the lack of a graphical user interface used by some related tools such as PSAT [5]....

    [...]

  • ...A nice summary of their features is presented in [5]....

    [...]