scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education

TL;DR: The details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture, are presented, which are used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits.
Abstract: MATPOWER is an open-source Matlab-based power system simulation package that provides a high-level set of power flow, optimal power flow (OPF), and other tools targeted toward researchers, educators, and students. The OPF architecture is designed to be extensible, making it easy to add user-defined variables, costs, and constraints to the standard OPF problem. This paper presents the details of the network modeling and problem formulations used by MATPOWER, including its extensible OPF architecture. This structure is used internally to implement several extensions to the standard OPF problem, including piece-wise linear cost functions, dispatchable loads, generator capability curves, and branch angle difference limits. Simulation results are presented for a number of test cases comparing the performance of several available OPF solvers and demonstrating MATPOWER's ability to solve large-scale AC and DC OPF problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a mathematical framework for cyber-physical systems, attacks, and monitors is proposed, and fundamental monitoring limitations from both system-theoretic and graph-based perspectives are characterized.
Abstract: Cyber-physical systems are ubiquitous in power systems, transportation networks, industrial control processes, and critical infrastructures. These systems need to operate reliably in the face of unforeseen failures and external malicious attacks. In this paper: (i) we propose a mathematical framework for cyber-physical systems, attacks, and monitors; (ii) we characterize fundamental monitoring limitations from system-theoretic and graph-theoretic perspectives; and (ii) we design centralized and distributed attack detection and identification monitors. Finally, we validate our findings through compelling examples.

1,430 citations

Posted Content
TL;DR: This paper proposes a mathematical framework for cyber-physical systems, attacks, and monitors, and describes fundamental monitoring limitations from system-theoretic and graph- theoretic perspectives and designs centralized and distributed attack detection and identification monitors.
Abstract: Cyber-physical systems integrate computation, communication, and physical capabilities to interact with the physical world and humans. Besides failures of components, cyber-physical systems are prone to malignant attacks, and specific analysis tools as well as monitoring mechanisms need to be developed to enforce system security and reliability. This paper proposes a unified framework to analyze the resilience of cyber-physical systems against attacks cast by an omniscient adversary. We model cyber-physical systems as linear descriptor systems, and attacks as exogenous unknown inputs. Despite its simplicity, our model captures various real-world cyber-physical systems, and it includes and generalizes many prototypical attacks, including stealth, (dynamic) false-data injection and replay attacks. First, we characterize fundamental limitations of static, dynamic, and active monitors for attack detection and identification. Second, we provide constructive algebraic conditions to cast undetectable and unidentifiable attacks. Third, by using the system interconnection structure, we describe graph-theoretic conditions for the existence of undetectable and unidentifiable attacks. Finally, we validate our findings through some illustrative examples with different cyber-physical systems, such as a municipal water supply network and two electrical power grids.

1,190 citations


Cites background from "MATPOWER: Steady-State Operations, ..."

  • ...This test case system is composed of 118 buses and 54 generators, and its parameters can be found, for example, in [29]....

    [...]

Journal ArticleDOI
TL;DR: This work presents a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network of a strongly coupled and sufficiently homogeneous network.
Abstract: The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

922 citations

Journal ArticleDOI
TL;DR: This paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
Abstract: Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. This paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

800 citations


Cites background from "MATPOWER: Steady-State Operations, ..."

  • ..., the 2383-bus Polish system in MATPOWER [120]) [75]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a condition for the stability of the synchronous state enables identification of network parameters that enhance spontaneous synchronization, highlighting the possibility of smart grids that operate optimally in real-world systems.
Abstract: Power-grid networks must be synchronized in order to function. A condition for the stability of the synchronous state enables identification of network parameters that enhance spontaneous synchronization—heralding the possibility of smart grids that operate optimally in real-world systems.

653 citations

References
More filters
Journal ArticleDOI
01 Jan 1999
TL;DR: The architecture and uses of an Internet-based software platform called PowerWeb, designed to host simulations of a competitive `day-ahead' electric energy market in which the participants interact by submitting bids or offers into a market via a web-based user interface is described.
Abstract: This paper describes the architecture and uses of an Internet-based software platform called PowerWeb. PowerWeb was designed and implemented as a simulation environment for evaluating various power exchange auction markets through experimental investigation. It is designed to host simulations of a competitive `day-ahead' electric energy market in which the participants interact by submitting bids or offers into a market via a web-based user interface. The PowerWeb environment is meant to be flexible so as to allow investigation of various market mechanisms. In this paper we describe its interactive, distributed and web-based character.

74 citations

Proceedings ArticleDOI
10 Oct 2004
TL;DR: PowerWeb as discussed by the authors is a Web-based electric power market simulation tool that combines the human behavior characteristics of a market structure with the operational and reliability aspects of the underlying power system to evaluate the economic and reliability impacts of given market designs as well as to train and educate students, industry professionals and policy makers.
Abstract: This paper describes a Web-based electric power market simulation tool called PowerWeb. It can be used as an experimental economics research tool to evaluate the economic and reliability impacts of given market designs as well as to train and educate students, industry professionals and policy makers. It is unique in its ability to combine the human behavior characteristics of a market structure with the operational and reliability aspects of the underlying power system.

28 citations


"MATPOWER: Steady-State Operations, ..." refers methods in this paper

  • ...The initial motivation for the development of the Matlabbased power flow and OPF code that would eventually become MATPOWER arose from the computational requirements of the PowerWeb platform [3], [4]....

    [...]