Book•

# Matrix computations

01 Jan 1983-

About: The article was published on 1983-01-01 and is currently open access. It has received 34706 citation(s) till now. The article focuses on the topic(s): Matrix (mathematics) & LU decomposition.

Topics: Matrix (mathematics) (61%), LU decomposition (59%), Interpolative decomposition (57%), Bidiagonal matrix (57%), Eigenvalue algorithm (56%)

##### Citations

More filters

•

[...]

01 Jan 2004-

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.

Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,593 citations

••

Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

15,673 citations

•

23 May 2011-

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.

Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

14,958 citations

••

TL;DR: It is shown that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation, and an algorithm called LARS‐EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lamba.

Abstract: Summary. We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.The elastic net is particularly useful when the number of predictors (p) is much bigger than the number of observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the

13,722 citations

••

Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

13,375 citations