scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling

TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.
About: This article is published in Cell.The article was published on 2009-11-25 and is currently open access. It has received 3396 citations till now. The article focuses on the topics: Focal adhesion & Role of cell adhesions in neural development.
Citations
More filters
Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner.

4,185 citations


Cites background from "Matrix Crosslinking Forces Tumor Pr..."

  • ...This results in the recruitment of myeloid cells to 60 Cell 141, April 2, 2010 ©2010 Elsevier Inc. these sites (Erler et al., 2009), possibly owing to altered tissue stiffness (Levental et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types, which presents interesting new targets for anticancer therapy.

3,486 citations


Cites background from "Matrix Crosslinking Forces Tumor Pr..."

  • ...Notably, genetic or pharmacological blockade of lysyl oxidasemediated collagen crosslinking impedes late-stage cancer progression in mouse models of mammary carcinogenesis (Levental et al., 2009)....

    [...]

  • ...…crosslinking of collagen fibrils (largely produced by CAFs) that imparts a proinvasive phenotype on mammary cancer cells, which is dependent on enhanced PI3 kinase (PI3K) signaling, and associated with integrin clustering and increased presence of focal adhesions (Levental et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: The extracellular matrix is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue development.
Abstract: ![Figure][1] The extracellular matrix (ECM) is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue

3,190 citations


Cites background from "Matrix Crosslinking Forces Tumor Pr..."

  • ...The stiffening of tumors is induced by ECM deposition and remodeling by resident fibroblasts, and by increased contractility of the transformed epithelium (Butcher et al., 2009; Levental et al., 2009)....

    [...]

  • ...…fibers are reoriented and, thereafter, crosslinked by LOX and transglutaminase, thus generating larger, more-rigid fibrils that further stiffen the tissue ECM (Butcher et al., 2009; Erler and Weaver, 2009; Levental et al., 2009; Lucero and Kagan, 2006; Payne et al., 2007; Rodriguez et al., 2008)....

    [...]

  • ...Thus collagen I gels are useful substrates to assess the role of collagen and FN stiffness, and organization on the pathogenesis of tumor progression and invasion (Levental et al., 2009; Provenzano et al., 2009)....

    [...]

Journal ArticleDOI
14 Oct 2011-Cell
TL;DR: The invasion-metastasis cascade is a multistep cell-biological process that involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments as mentioned in this paper.

3,150 citations

Journal ArticleDOI
TL;DR: The extracellular matrix is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands, and its regulation contributes to several pathological conditions, such as fibrosis and invasive cancer.
Abstract: The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics.

2,854 citations

References
More filters
Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.

12,204 citations

Journal ArticleDOI
20 Sep 2002-Cell
TL;DR: Current structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways.

8,275 citations

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Abstract: Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells-including fibroblasts, myocytes, neurons, and other cell types-sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actinmyosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

5,889 citations

Journal ArticleDOI
TL;DR: It is shown that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer.
Abstract: Matrix metalloproteinases (MMPs) have long been associated with cancer-cell invasion and metastasis. This provided the rationale for clinical trials of MMP inhibitors, unfortunately with disappointing results. We now know, however, that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer. With this knowledge in hand, can we rethink the use of MMP inhibitors in the clinic?

5,860 citations