scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Max-min d-cluster formation in wireless ad hoc networks

26 Mar 2000-Vol. 1, pp 32-41
TL;DR: A heuristic to form d-clusters in a wireless ad hoc network that tends to re-elect existing clusterheads even when the network configuration changes and has a tendency to evenly distribute the mobile nodes among the clusterheads, and evently distribute the responsibility of acting as clusterheads among all nodes.
Abstract: An ad hoc network may be logically represented as a set of clusters. The clusterheads form a d-hop dominating set. Each node is at most d hops from a clusterhead. Clusterheads form a virtual backbone and may be used to route packets for nodes in their cluster. Previous heuristics restricted themselves to 1-hop clusters. We show that the minimum d-hop dominating set problem is NP-complete. Then we present a heuristic to form d-clusters in a wireless ad hoc network. Nodes are assumed to have a non-deterministic mobility pattern. Clusters are formed by diffusing node identities along the wireless links. When the heuristic terminates, a node either becomes a clusterhead, or is at most d wireless hops away from its clusterhead. The value of d is a parameter of the heuristic. The heuristic can be run either at regular intervals, or whenever the network configuration changes. One of the features of the heuristic is that it tends to re-elect existing clusterheads even when the network configuration changes. This helps to reduce the communication overheads during transition from old clusterheads to new clusterheads. Also, there is a tendency to evenly distribute the mobile nodes among the clusterheads, and evently distribute the responsibility of acting as clusterheads among all nodes. Thus, the heuristic is fair and stable. Simulation experiments demonstrate that the proposed heuristic is better than the two earlier heuristics, namely the LCA and degree-based solutions.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations


Cites background from "Max-min d-cluster formation in wire..."

  • ...Index Terms—Sensor networks, clustering, network lifetime, energy efficiency, fault tolerance....

    [...]

Journal ArticleDOI
TL;DR: A taxonomy and general classification of published clustering schemes for WSNs is presented, highlighting their objectives, features, complexity, etc and comparing of these clustering algorithms based on metrics such as convergence rate, cluster stability, cluster overlapping, location-awareness and support for node mobility.

2,283 citations

Journal ArticleDOI
TL;DR: A suite of algorithms for self-organization of wireless sensor networks in which there is a scalably large number of mainly static nodes with highly constrained energy resources and support slow mobility by a subset of the nodes, energy-efficient routing, and formation of ad hoc subnetworks.
Abstract: We present a suite of algorithms for self-organization of wireless sensor networks in which there is a scalably large number of mainly static nodes with highly constrained energy resources. The protocols further support slow mobility by a subset of the nodes, energy-efficient routing, and formation of ad hoc subnetworks for carrying out cooperative signal processing functions among a set of the nodes.

2,227 citations


Cites background from "Max-min d-cluster formation in wire..."

  • ...For in-depth detail about the internal mechanisms of the SMACS, SAR, SWE, and MWE, see [9,10]....

    [...]

Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper proposes a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters, and extends this algorithm to generate a hierarchy of clusterheads and observes that the energy savings increase with the number of levels in the hierarchy.
Abstract: A wireless network consisting of a large number of small sensors with low-power transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to determine characteristics of the environment or detect an event. The communication or message passing process must be designed to conserve the limited energy resources of the sensors. Clustering sensors into groups, so that sensors communicate information only to clusterheads and then the clusterheads communicate the aggregated information to the processing center, may save energy. In this paper, we propose a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters. We then extend this algorithm to generate a hierarchy of clusterheads and observe that the energy savings increase with the number of levels in the hierarchy. Results in stochastic geometry are used to derive solutions for the values of parameters of our algorithm that minimize the total energy spent in the network when all sensors report data through the clusterheads to the processing center.

1,935 citations


Cites background from "Max-min d-cluster formation in wire..."

  • ...(13) The expected number of level-(i-1) CHs in a typical level-i cluster is given by i i i p p nNNE − == 1 ]...

    [...]

  • ...The clustering algorithm proposed in [7] aims at maximizing the network lifetime, but it assumes that each node is aware of the whole network topology, which is usually impossible for wireless sensor networks which have a large number of nodes....

    [...]

  • ...An ad-hoc wireless network of large numbers of such inexpensive but less reliable and accurate sensors can be used in a wide variety of commercial and military applications....

    [...]

Proceedings ArticleDOI
07 Mar 2004
TL;DR: A protocol is presented, HEED (hybrid energy-efficient distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree, which outperforms weight-based clustering protocols in terms of several cluster characteristics.
Abstract: Prolonged network lifetime, scalability, and load balancing are important requirements for many ad-hoc sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we propose a new energy-efficient approach for clustering nodes in ad-hoc sensor networks. Based on this approach, we present a protocol, HEED (hybrid energy-efficient distributed clustering), that periodically selects cluster heads according to a hybrid of their residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED does not make any assumptions about the distribution or density of nodes, or about node capabilities, e.g., location-awareness. The clustering process terminates in O(1) iterations, and does not depend on the network topology or size. The protocol incurs low overhead in terms of processing cycles and messages exchanged. It also achieves fairly uniform cluster head distribution across the network. A careful selection of the secondary clustering parameter can balance load among cluster heads. Our simulation results demonstrate that HEED outperforms weight-based clustering protocols in terms of several cluster characteristics. We also apply our approach to a simple application to demonstrate its effectiveness in prolonging the network lifetime and supporting data aggregation.

1,373 citations


Cites background from "Max-min d-cluster formation in wire..."

  • ...5) Cluster heads are well-distributed over the sensor field....

    [...]

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Journal ArticleDOI
TL;DR: For the problem of finding the maximum clique in a graph, no algorithm has been found for which the ratio does not grow at least as fast as n^@e, where n is the problem size and @e>0 depends on the algorithm.

2,472 citations


"Max-min d-cluster formation in wire..." refers background in this paper

  • ...A node is elected as a clusterhead if it is the highest connected node in all of the uncovered neighboring nodes....

    [...]

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations

Journal ArticleDOI
TL;DR: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented that supports multimedia traffic and relies on both time division and code division access schemes.
Abstract: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented. The proposed network supports multimedia traffic and relies on both time division and code division access schemes. This radio network is not supported by a wired infrastructure as conventional cellular systems are. Thus, it can be instantly deployed in areas with no infrastructure at all. By using a distributed clustering algorithm, nodes are organized into clusters. The clusterheads act as local coordinators to resolve channel scheduling, perform power measurement/control, maintain time division frame synchronization, and enhance the spatial reuse of time slots and codes. Moreover, to guarantee bandwidth for real time traffic, the architecture supports virtual circuits and allocates bandwidth to circuits at call setup time. The network is scalable to large numbers of nodes, and can handle mobility. Simulation experiments evaluate the performance of the proposed scheme in static and mobile environments.

1,610 citations


"Max-min d-cluster formation in wire..." refers background in this paper

  • ...Thus, the 0-neighborhood is only the node itself....

    [...]

  • ...One way to support efficient communication between nodes is to develop a wireless backbone architecture [1], [2], [4], [8]....

    [...]

Journal ArticleDOI
01 Jan 1987
TL;DR: This paper outlines those features that distinguish the High Frequency (HF) Intra Task Force (ITF) Network from other packet radio networks, and presents a design concept for this network that encompasses organizational structure, waveform design, and channel access.
Abstract: The design of a packet radio network must reflect the operational requirements and environmental constraints to which it is subject. In this paper, we outline those features that distinguish the High Frequency (HF) Intra Task Force (ITF) Network from other packet radio networks, and we present a design concept for this network that encompasses organizational structure, waveform design, and channel access. Network survivability is achieved through the use of distributed network control and frequency hopping spread-spectrum signaling. We demonstrate how the execution of the fully distributed Linked Cluster Algorithm can enable a network to reconfigure itself when it is affected by connectivity changes such as those resulting from jamming. Additional resistance against jamming is provided by frequency hopping, which leads naturally to the use of code division mutiple access (CDMA) techniques that permit the simultaneous successful transmission by several users. Distributed algorithms that exploit CDMA properties have been developed to schedule contention-free transmissions for much of the channel access in this network. Contention-based channel access protocols can also be implemented in conjunction with the Linked Cluster network structure. The design concept presented in this paper provides a high degree of survivability and flexibility, to accommodate changing environmental conditions and user demands.

943 citations


"Max-min d-cluster formation in wire..." refers background in this paper

  • ...Thus, the 0-neighborhood is only the node itself....

    [...]