scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference

01 May 1972-IEEE Transactions on Information Theory (IEEE)-Vol. 18, Iss: 3, pp 363-378
TL;DR: In this paper, a maximum likelihood sequence estimator for a digital pulse-amplitude-modulated sequence in the presence of finite intersymbol interference and white Gaussian noise is developed, which comprises a sampled linear filter, called a whitened matched filter, and a recursive nonlinear processor, called the Viterbi algorithm.
Abstract: A maximum-likelihood sequence estimator for a digital pulse-amplitude-modulated sequence in the presence of finite intersymbol interference and white Gaussian noise is developed, The structure comprises a sampled linear filter, called a whitened matched filter, and a recursive nonlinear processor, called the Viterbi algorithm. The outputs of the whitened matched filter, sampled once for each input symbol, are shown to form a set of sufficient statistics for estimation of the input sequence, a fact that makes obvious some earlier results on optimum linear processors. The Viterbi algorithm is easier to implement than earlier optimum nonlinear processors and its performance can be straightforwardly and accurately estimated. It is shown that performance (by whatever criterion) is effectively as good as could be attained by any receiver structure and in many cases is as good as if intersymbol interference were absent. Finally, a simplified but effectively optimum algorithm suitable for the most popular partial-response schemes is described.
Citations
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
01 Mar 1973
TL;DR: This paper gives a tutorial exposition of the Viterbi algorithm and of how it is implemented and analyzed, and increasing use of the algorithm in a widening variety of areas is foreseen.
Abstract: The Viterbi algorithm (VA) is a recursive optimal solution to the problem of estimating the state sequence of a discrete-time finite-state Markov process observed in memoryless noise. Many problems in areas such as digital communications can be cast in this form. This paper gives a tutorial exposition of the algorithm and of how it is implemented and analyzed. Applications to date are reviewed. Increasing use of the algorithm in a widening variety of areas is foreseen.

5,995 citations

Journal ArticleDOI
TL;DR: The results show that the proposed multiuser detectors afford important performance gains over conventional single-user systems, in which the signal constellation carries the entire burden of complexity required to achieve a given performance level.
Abstract: Consider a Gaussian multiple-access channel shared by K users who transmit asynchronously independent data streams by modulating a set of assigned signal waveforms. The uncoded probability of error achievable by optimum multiuser detectors is investigated. It is shown that the K -user maximum-likelihood sequence detector consists of a bank of single-user matched filters followed by a Viterbi algorithm whose complexity per binary decision is O(2^{K}) . The upper bound analysis of this detector follows an approach based on the decomposition of error sequences. The issues of convergence and tightness of the bounds are examined, and it is shown that the minimum multiuser error probability is equivalent in the Iow-noise region to that of a single-user system with reduced power. These results show that the proposed multiuser detectors afford important performance gains over conventional single-user systems, in which the signal constellation carries the entire burden of complexity required to achieve a given performance level.

2,300 citations

Dissertation
24 Apr 2002
TL;DR: Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding.
Abstract: Space-time codes (STC) are a class of signaling techniques, offering coding and diversity gains along with improved spectral efficiency. These codes exploit both the spatial and the temporal diversity of the wireless link by combining the design of the error correction code, modulation scheme and array processing. STC are well suited for improving the downlink performance, which is the bottleneck in asymmetric applications such as downstream Internet. Three original contributions to the area of STC are presented in this dissertation. First, the development of analytic tools that determine the fundamental limits on the performance of STC in a variety of channel conditions. For trellis-type STC, transfer function based techniques are applied to derive performance bounds over Rayleigh, Rician and correlated fading environments. For block-type STC, an analytic framework that supports various complex orthogonal designs with arbitrary signal cardinalities and array configurations is developed. In the second part of the dissertation, the Virginia Tech Space-Time Advanced Radio (VT-STAR) is designed, introducing a multi-antenna hardware laboratory test bed, which facilitates characterization of the multiple-input multiple-output (MIMO) channel and validation of various space-time approaches. In the third part of the dissertation, two novel space-time architectures paired with iterative processing principles are proposed. The first scheme extends the suitability of STC to outdoor wireless communications by employing iterative equalization/decoding for time dispersive channels and the second scheme employs iterative interference cancellation/decoding to solve the error propagation problem of Bell-Labs Layered Space-Time Architecture (BLAST). Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding.

2,286 citations

Journal ArticleDOI
TL;DR: This paper describes the statistical models of fading channels which are frequently used in the analysis and design of communication systems, and focuses on the information theory of fading channel, by emphasizing capacity as the most important performance measure.
Abstract: In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.

2,017 citations

References
More filters
Journal ArticleDOI
TL;DR: The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.
Abstract: The probability of error in decoding an optimal convolutional code transmitted over a memoryless channel is bounded from above and below as a function of the constraint length of the code. For all but pathological channels the bounds are asymptotically (exponentially) tight for rates above R_{0} , the computational cutoff rate of sequential decoding. As a function of constraint length the performance of optimal convolutional codes is shown to be superior to that of block codes of the same length, the relative improvement increasing with rate. The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

6,804 citations

Book
01 Jan 1965
TL;DR: Textbook on communication engineering emphasizing random processes, information and detection theory, statistical communication theory, applications, etc.
Abstract: Textbook on communication engineering emphasizing random processes, information and detection theory, statistical communication theory, applications, etc

1,519 citations

Journal ArticleDOI
TL;DR: This tutorial paper begins with an elementary presentation of the fundamental properties and structure of convolutional codes and proceeds with the development of the maximum likelihood decoder, which yields for arbitrary codes both the distance properties and upper bounds on the bit error probability.
Abstract: This tutorial paper begins with an elementary presentation of the fundamental properties and structure of convolutional codes and proceeds with the development of the maximum likelihood decoder. The powerful tool of generating function analysis is demonstrated to yield for arbitrary codes both the distance properties and upper bounds on the bit error probability for communication over any memoryless channel. Previous results on code ensemble average error probabilities are also derived and extended by these techniques. Finally, practical considerations concerning finite decoding memory, metric representation, and synchronization are discussed.

1,040 citations

Book
01 Jan 1968

1,016 citations