scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MDLText aplicado na Filtragem Automática de SPIM e SMS Spam

21 May 2018-iSys (Sociedade Brasileira de Computacao - SB)-Vol. 11, Iss: 1, pp 103-132
TL;DR: A simple, fast, scalable, multiclass, and online text classification method based on the minimum description length principle that is effective on instant messaging and SMS spam filtering in both online and offline learning contexts is evaluated.
Abstract: Spam filtering in online instant messages and SMS is a challenging problem nowadays. It is because the messages are often very short and rife with slangs, idioms, symbols, emoticons, and abbreviations which hamper predicting and knowledge discovering. In order to face this problem, we evaluated a simple, fast, scalable, multiclass, and online text classification method based on the minimum description length principle. We conducted experiments using a real and public dataset, which demonstrate that our method is effective on instant messaging and SMS spam filtering in both online and offline learning contexts.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A computational approach to authorship attribution in a multilingual environment, based on latin languages, to extract from the grammatical structures of the sentences, the stylometric pattern of each author.
Abstract: In this paper we presented a computational approach to authorship attribution in a multilingual environment, based on latin languages. Initially, we defined the databases of literary texts, written by consecrated authors of Portuguese, Spanish and French literature. Subsequently, we established a set formed by groups of stylometric characteristics, which are: morphological, flexors, syntactic and auxiliary. The main objective is to extract from the grammatical structures of the sentences, the stylometric pattern of each author. We perform experiments with author-dependent approach, using verification and identification strategies. In the classification process we use the Support Vector Machines – SVM, with a linear kernel.

1 citations

References
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations

Book
Christopher M. Bishop1
17 Aug 2006
TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

22,840 citations

Book
28 Jul 2013
TL;DR: In this paper, the authors describe the important ideas in these areas in a common conceptual framework, and the emphasis is on concepts rather than mathematics, with a liberal use of color graphics.
Abstract: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

19,261 citations