scispace - formally typeset
Search or ask a question
BookDOI

Measurement, Instrumentation, and Sensors Handbook : Spatial, Mechanical, Thermal, and Radiation Measurement

TL;DR: The second edition of the bestselling Measurement, Instrumentation, and Sensors Handbook as discussed by the authors brings together all aspects of the design and implementation of measurement, instrumentation and sensors, including processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes.
Abstract: The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Spatial, Mechanical, Thermal, and Radiation Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 96 existing chapters Covers instrumentation and measurement concepts, spatial and mechanical variables, displacement, acoustics, flow and spot velocity, radiation, wireless sensors and instrumentation, and control and human factors A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Spatial, Mechanical, Thermal, and Radiation Measurement provides readers with a greater understanding of advanced applications.
Citations
More filters
Journal ArticleDOI
20 Feb 2017-ACS Nano
TL;DR: The graphite material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks, which is a simple and scalable production route for conductive inks for large-area printing in flexible electronics.
Abstract: We report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 108 s–1] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below ∼2Ω/□. This is a simple and scalable production route for conductive inks for large-area printing in flexible electronics.

248 citations

Journal ArticleDOI
TL;DR: Monitoring of laser processes has been researched actively since the 1980's in several institutes around the world and has been commercially applied to even the newest laser processes, e.g. additive manufacturing.

206 citations


Additional excerpts

  • ...(Culshaw 2014)....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review of various PV monitoring systems is presented for the first time in this paper, which includes the detailed overview of all the major PV monitoring evaluation techniques in terms of their relative performances.
Abstract: The Photovoltaic (PV) monitoring system collects and analyzes number of parameters being measured in a PV plant to monitor and/or evaluate its performance. In order to ensure the reliable and stable operation of any PV system, an effective monitoring system is essential. Moreover, the monitoring system keeps track on various electricity generation indices and fault occurrences. The cost and complexity of existing PV monitoring systems restricts their use to large scale PV plants. Over the past decade, different aspects of PV monitoring systems were reported in wide range of literature. In this paper, a comprehensive review of various PV monitoring systems is presented for the first time. This includes the detailed overview of all the major PV monitoring evaluation techniques in terms of their relative performances. Major aspects of PV monitoring systems which examines in this paper are: sensors and their working principles, controller used in data acquisition systems, data transmission methods, and data storage and analysis. The acquaintance of all these aspects are crucial for the development of effective, low cost, and viable PV monitoring systems for small and medium scale PV plants without compromising on the desired performance.

184 citations

Proceedings ArticleDOI
07 Aug 2018
TL;DR: The results show that TARF can achieve standard underwater bitrates up to 400bps, and that it can operate correctly in the presence of surface waves with amplitudes up to 16 cm peak-to-peak, i.e., 100,000X larger than the surface perturbations caused by TARf's underwater acoustic transmitter.
Abstract: We consider the problem of wireless communication across medium boundaries, specifically across the water-air interface. In particular, we are interested in enabling a submerged underwater sensor to directly communicate with an airborne node. Today's communication technologies cannot enable such a communication link. This is because no single type of wireless signal can operate well across different media and most wireless signals reflect back at media boundaries. We present a new communication technology, translational acoustic-RF communication (TARF). TARF enables underwater nodes to directly communicate with airborne nodes by transmitting standard acoustic signals. TARF exploits the fact that underwater acoustic signals travel as pressure waves, and that these waves cause displacements of the water surface when they impinge on the water-air boundary. To decode the transmitted signals, TARF leverages an airborne radar which measures and decodes these surface displacements. We built a prototype of TARF that incorporates algorithms for dealing with the constraints of this new communication modality. We evaluated TARF in controlled and uncontrolled environments and demonstrated that it enables the first practical communication link across the water-air interface. Our results show that TARF can achieve standard underwater bitrates up to 400bps, and that it can operate correctly in the presence of surface waves with amplitudes up to 16 cm peak-to-peak, i.e., 100,000X larger than the surface perturbations caused by TARF's underwater acoustic transmitter.

93 citations

Journal ArticleDOI
04 Feb 2020-Sensors
TL;DR: The theoretical capabilities of a number of prominent SHM methods are demonstrated by comparing their fundamental physical models to the actual effects of damage on metal and composite structures.
Abstract: Structural health monitoring (SHM) is the continuous on-board monitoring of a structure's condition during operation by integrated systems of sensors. SHM is believed to have the potential to increase the safety of the structure while reducing its deadweight and downtime. Numerous SHM methods exist that allow the observation and assessment of different damages of different kinds of structures. Recently data fusion on different levels has been getting attention for joint damage evaluation by different SHM methods to achieve increased assessment accuracy and reliability. However, little attention is given to the question of which SHM methods are promising to combine. The current article addresses this issue by demonstrating the theoretical capabilities of a number of prominent SHM methods by comparing their fundamental physical models to the actual effects of damage on metal and composite structures. Furthermore, an overview of the state-of-the-art damage assessment concepts for different levels of SHM is given. As a result, dynamic SHM methods using ultrasonic waves and vibrations appear to be very powerful but suffer from their sensitivity to environmental influences. Combining such dynamic methods with static strain-based or conductivity-based methods and with additional sensors for environmental entities might yield a robust multi-sensor SHM approach. For demonstration, a potent system of sensors is defined and a possible joint data evaluation scheme for a multi-sensor SHM approach is presented.

90 citations